You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
6.7 KiB
176 lines
6.7 KiB
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
|
|
#
|
|
# licensed under the apache license, version 2.0 (the "license");
|
|
# you may not use this file except in compliance with the license.
|
|
# you may obtain a copy of the license at
|
|
#
|
|
# http://www.apache.org/licenses/license-2.0
|
|
#
|
|
# unless required by applicable law or agreed to in writing, software
|
|
# distributed under the license is distributed on an "as is" basis,
|
|
# without warranties or conditions of any kind, either express or implied.
|
|
# see the license for the specific language governing permissions and
|
|
# limitations under the license.
|
|
|
|
import unittest
|
|
import random
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
import six
|
|
from paddle.fluid.framework import Program
|
|
from paddle.fluid.framework import IrGraph
|
|
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
|
|
from paddle.fluid import core
|
|
|
|
|
|
def linear_fc(num):
|
|
data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
hidden = data
|
|
for _ in six.moves.xrange(num):
|
|
hidden = fluid.layers.fc(hidden, size=128, act='relu')
|
|
loss = fluid.layers.cross_entropy(input=hidden, label=label)
|
|
loss = fluid.layers.mean(loss)
|
|
return loss
|
|
|
|
|
|
def residual_block(num):
|
|
def conv_bn_layer(input,
|
|
ch_out,
|
|
filter_size,
|
|
stride,
|
|
padding,
|
|
act='relu',
|
|
bias_attr=False):
|
|
tmp = fluid.layers.conv2d(
|
|
input=input,
|
|
filter_size=filter_size,
|
|
num_filters=ch_out,
|
|
stride=stride,
|
|
padding=padding,
|
|
act=None,
|
|
bias_attr=bias_attr)
|
|
return fluid.layers.batch_norm(input=tmp, act=act)
|
|
|
|
data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
hidden = data
|
|
for _ in six.moves.xrange(num):
|
|
conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
|
|
short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
|
|
hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
|
|
fc = fluid.layers.fc(input=hidden, size=10)
|
|
loss = fluid.layers.cross_entropy(input=fc, label=label)
|
|
loss = fluid.layers.mean(loss)
|
|
return loss
|
|
|
|
|
|
class TestQuantizationTransformPass(unittest.TestCase):
|
|
def setUp(self):
|
|
self.quantizable_op_and_inputs = {
|
|
'conv2d': ['Input', 'Filter'],
|
|
'depthwise_conv2d': ['Input', 'Filter'],
|
|
'mul': ['X', 'Y']
|
|
}
|
|
self.quantizable_grad_op_inputs = {
|
|
'conv2d_grad': ['Input', 'Filter'],
|
|
'depthwise_conv2d_grad': ['Input', 'Filter'],
|
|
'mul_grad': ['X', 'Y']
|
|
}
|
|
|
|
def check_program(self, transform_pass, program):
|
|
quantized_ops = set()
|
|
for block in program.blocks:
|
|
for op in block.ops:
|
|
# check forward
|
|
if op.type in self.quantizable_op_and_inputs:
|
|
for arg_name in op.input_arg_names:
|
|
self.assertTrue(
|
|
arg_name.endswith('.quantized.dequantized'))
|
|
quantized_ops.add(arg_name)
|
|
|
|
for op in block.ops:
|
|
# check backward
|
|
if op.type in self.quantizable_grad_op_inputs:
|
|
for pname in self.quantizable_grad_op_inputs[op.type]:
|
|
arg_name = op.input(pname)[0]
|
|
self.assertTrue(
|
|
arg_name.endswith('.quantized.dequantized'))
|
|
self.assertTrue(arg_name in quantized_ops)
|
|
|
|
def linear_fc_quant(self, quant_type):
|
|
main = fluid.Program()
|
|
startup = fluid.Program()
|
|
with fluid.program_guard(main, startup):
|
|
loss = linear_fc(3)
|
|
opt = fluid.optimizer.Adam(learning_rate=0.001)
|
|
opt.minimize(loss)
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
graph = IrGraph(core.Graph(main.desc), for_test=False)
|
|
transform_pass = QuantizationTransformPass(
|
|
scope=fluid.global_scope(),
|
|
program_exe=exe,
|
|
activation_quantize_type=quant_type)
|
|
transform_pass.apply(graph)
|
|
marked_nodes = set()
|
|
for op in graph.all_ops():
|
|
if op.name().find('quantize') > -1:
|
|
marked_nodes.add(op)
|
|
graph.draw('.', 'quantize_fc_' + quant_type, marked_nodes)
|
|
program = graph.to_program()
|
|
self.check_program(transform_pass, program)
|
|
val_graph = IrGraph(core.Graph(program.desc), for_test=False)
|
|
val_marked_nodes = set()
|
|
for op in val_graph.all_ops():
|
|
if op.name().find('quantize') > -1:
|
|
val_marked_nodes.add(op)
|
|
val_graph.draw('.', 'val_fc_' + quant_type, val_marked_nodes)
|
|
|
|
def test_linear_fc_quant_abs_max(self):
|
|
self.act_quant_op_type = 'fake_quantize_abs_max'
|
|
self.linear_fc_quant('abs_max')
|
|
|
|
def test_linear_fc_quant_range_abs_max(self):
|
|
self.act_quant_op_type = 'fake_quantize_range_abs_max'
|
|
self.linear_fc_quant('range_abs_max')
|
|
|
|
def residual_block_quant(self, quant_type):
|
|
main = fluid.Program()
|
|
startup = fluid.Program()
|
|
with fluid.program_guard(main, startup):
|
|
loss = residual_block(2)
|
|
opt = fluid.optimizer.Adam(learning_rate=0.001)
|
|
opt.minimize(loss)
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
graph = IrGraph(core.Graph(main.desc), for_test=False)
|
|
transform_pass = QuantizationTransformPass(
|
|
scope=fluid.global_scope(),
|
|
program_exe=exe,
|
|
activation_quantize_type=quant_type)
|
|
transform_pass.apply(graph)
|
|
marked_nodes = set()
|
|
for op in graph.all_ops():
|
|
if op.name().find('quantize') > -1:
|
|
marked_nodes.add(op)
|
|
graph.draw('.', 'quantize_residual_' + quant_type, marked_nodes)
|
|
program = graph.to_program()
|
|
self.check_program(transform_pass, program)
|
|
val_graph = IrGraph(core.Graph(program.desc), for_test=False)
|
|
val_marked_nodes = set()
|
|
for op in val_graph.all_ops():
|
|
if op.name().find('quantize') > -1:
|
|
val_marked_nodes.add(op)
|
|
val_graph.draw('.', 'val_residual_' + quant_type, val_marked_nodes)
|
|
|
|
def test_residual_block_abs_max(self):
|
|
self.act_quant_op_type = 'fake_quantize_abs_max'
|
|
self.residual_block_quant('abs_max')
|
|
|
|
def test_residual_block_range_abs_max(self):
|
|
self.act_quant_op_type = 'fake_quantize_range_abs_max'
|
|
self.residual_block_quant('range_abs_max')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|