You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
232 lines
6.7 KiB
232 lines
6.7 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import argparse
|
|
import time
|
|
import math
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.profiler as profiler
|
|
from paddle.fluid import core
|
|
import unittest
|
|
from multiprocessing import Process
|
|
import os
|
|
import signal
|
|
import six
|
|
import tarfile
|
|
import string
|
|
import re
|
|
from functools import reduce
|
|
from test_dist_base import TestDistRunnerBase, runtime_main
|
|
|
|
DTYPE = "float32"
|
|
VOCAB_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/imdb.vocab'
|
|
VOCAB_MD5 = '23c86a0533c0151b6f12fa52b106dcc2'
|
|
DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/text_classification.tar.gz'
|
|
DATA_MD5 = '29ebfc94f11aea9362bbb7f5e9d86b8a'
|
|
|
|
|
|
# Load dictionary.
|
|
def load_vocab(filename):
|
|
vocab = {}
|
|
if six.PY2:
|
|
with open(filename, 'r') as f:
|
|
for idx, line in enumerate(f):
|
|
vocab[line.strip()] = idx
|
|
else:
|
|
with open(filename, 'r', encoding="utf-8") as f:
|
|
for idx, line in enumerate(f):
|
|
vocab[line.strip()] = idx
|
|
return vocab
|
|
|
|
|
|
def get_worddict(dict_path):
|
|
word_dict = load_vocab(dict_path)
|
|
word_dict["<unk>"] = len(word_dict)
|
|
dict_dim = len(word_dict)
|
|
return word_dict, dict_dim
|
|
|
|
|
|
def conv_net(input,
|
|
dict_dim,
|
|
emb_dim=128,
|
|
window_size=3,
|
|
num_filters=128,
|
|
fc0_dim=96,
|
|
class_dim=2):
|
|
emb = fluid.layers.embedding(
|
|
input=input,
|
|
size=[dict_dim, emb_dim],
|
|
is_sparse=False,
|
|
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
|
|
value=0.01)))
|
|
|
|
conv_3 = fluid.nets.sequence_conv_pool(
|
|
input=emb,
|
|
num_filters=num_filters,
|
|
filter_size=window_size,
|
|
act="tanh",
|
|
pool_type="max",
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.01)))
|
|
|
|
fc_0 = fluid.layers.fc(
|
|
input=[conv_3],
|
|
size=fc0_dim,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.01)))
|
|
|
|
prediction = fluid.layers.fc(
|
|
input=[fc_0],
|
|
size=class_dim,
|
|
act="softmax",
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.01)))
|
|
|
|
return prediction
|
|
|
|
|
|
def inference_network(dict_dim):
|
|
data = fluid.layers.data(
|
|
name="words", shape=[1], dtype="int64", lod_level=1)
|
|
out = conv_net(data, dict_dim)
|
|
return out
|
|
|
|
|
|
def get_reader(word_dict, batch_size):
|
|
# The training data set.
|
|
train_reader = paddle.batch(train(word_dict), batch_size=batch_size)
|
|
|
|
# The testing data set.
|
|
test_reader = paddle.batch(test(word_dict), batch_size=batch_size)
|
|
|
|
return train_reader, test_reader
|
|
|
|
|
|
def get_optimizer(learning_rate):
|
|
optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
|
|
return optimizer
|
|
|
|
|
|
class TestDistTextClassification2x2(TestDistRunnerBase):
|
|
def get_model(self, batch_size=2):
|
|
vocab = os.path.join(paddle.dataset.common.DATA_HOME,
|
|
"text_classification", "imdb.vocab")
|
|
word_dict, dict_dim = get_worddict(vocab)
|
|
|
|
# Input data
|
|
data = fluid.layers.data(
|
|
name="words", shape=[1], dtype="int64", lod_level=1)
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
# Train program
|
|
predict = conv_net(data, dict_dim)
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
acc = fluid.layers.accuracy(input=predict, label=label)
|
|
inference_program = fluid.default_main_program().clone()
|
|
|
|
# Optimization
|
|
opt = get_optimizer(learning_rate=0.001)
|
|
opt.minimize(avg_cost)
|
|
|
|
# Reader
|
|
train_reader, test_reader = get_reader(word_dict, batch_size)
|
|
|
|
return inference_program, avg_cost, train_reader, test_reader, acc, predict
|
|
|
|
|
|
def tokenize(pattern):
|
|
"""
|
|
Read files that match the given pattern. Tokenize and yield each file.
|
|
"""
|
|
|
|
with tarfile.open(
|
|
paddle.dataset.common.download(DATA_URL, 'text_classification',
|
|
DATA_MD5)) as tarf:
|
|
# Note that we should use tarfile.next(), which does
|
|
# sequential access of member files, other than
|
|
# tarfile.extractfile, which does random access and might
|
|
# destroy hard disks.
|
|
tf = tarf.next()
|
|
while tf != None:
|
|
if bool(pattern.match(tf.name)):
|
|
# newline and punctuations removal and ad-hoc tokenization.
|
|
yield tarf.extractfile(tf).read().rstrip(six.b(
|
|
"\n\r")).translate(
|
|
None, six.b(string.punctuation)).lower().split()
|
|
tf = tarf.next()
|
|
|
|
|
|
def reader_creator(pos_pattern, neg_pattern, word_idx):
|
|
UNK = word_idx['<unk>']
|
|
INS = []
|
|
|
|
def load(pattern, out, label):
|
|
for doc in tokenize(pattern):
|
|
out.append(([word_idx.get(w, UNK) for w in doc], label))
|
|
|
|
load(pos_pattern, INS, 0)
|
|
load(neg_pattern, INS, 1)
|
|
|
|
def reader():
|
|
for doc, label in INS:
|
|
yield doc, label
|
|
|
|
return reader
|
|
|
|
|
|
def train(word_idx):
|
|
"""
|
|
IMDB training set creator.
|
|
|
|
It returns a reader creator, each sample in the reader is an zero-based ID
|
|
sequence and label in [0, 1].
|
|
|
|
:param word_idx: word dictionary
|
|
:type word_idx: dict
|
|
:return: Training reader creator
|
|
:rtype: callable
|
|
"""
|
|
return reader_creator(
|
|
re.compile("train/pos/.*\.txt$"),
|
|
re.compile("train/neg/.*\.txt$"), word_idx)
|
|
|
|
|
|
def test(word_idx):
|
|
"""
|
|
IMDB test set creator.
|
|
|
|
It returns a reader creator, each sample in the reader is an zero-based ID
|
|
sequence and label in [0, 1].
|
|
|
|
:param word_idx: word dictionary
|
|
:type word_idx: dict
|
|
:return: Test reader creator
|
|
:rtype: callable
|
|
"""
|
|
return reader_creator(
|
|
re.compile("test/pos/.*\.txt$"),
|
|
re.compile("test/neg/.*\.txt$"), word_idx)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
paddle.dataset.common.download(VOCAB_URL, 'text_classification', VOCAB_MD5)
|
|
paddle.dataset.common.download(DATA_URL, 'text_classification', DATA_MD5)
|
|
runtime_main(TestDistTextClassification2x2)
|