You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_async_executor.py

143 lines
5.1 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import paddle
import unittest
import tarfile
import os
import shutil
proto_str = ('name: "MultiSlotDataFeed"\n'
'batch_size: 2\n'
'multi_slot_desc {\n'
' slots {\n'
' name: "words"\n'
' type: "uint64"\n'
' is_dense: false\n'
' is_used: true\n'
' }\n'
' slots {\n'
' name: "label"\n'
' type: "uint64"\n'
' is_dense: false\n'
' is_used: true\n'
' }\n'
'}')
URL = 'http://paddle-unittest-data.gz.bcebos.com/python_paddle_fluid_tests_demo_async-executor/train_data.tar.gz'
MD5 = '2a405a31508969b3ab823f42c0f522ca'
def bow_net(data,
label,
dict_dim=89528,
emb_dim=128,
hid_dim=128,
hid_dim2=96,
class_dim=2):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
models/fluid/PaddleNLP/text_classification/nets.py
"""
# embedding
emb = fluid.layers.embedding(
input=data, size=[dict_dim, emb_dim], is_sparse=True)
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
bowh = fluid.layers.tanh(bow)
# fc layer after conv
fc_1 = fluid.layers.fc(input=bowh, size=hid_dim, act="tanh")
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
# probability of each class
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
# cross entropy loss
cost = fluid.layers.cross_entropy(input=prediction, label=label)
# mean loss
avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, acc, prediction
class TestAsyncExecutor(unittest.TestCase):
def setUp(self):
with open('./data.prototxt', 'w+') as f:
f.write(proto_str)
f.close()
with tarfile.open(paddle.dataset.common.download(URL, "imdb",
MD5)) as tarf:
tarf.extractall(path='./')
tarf.close()
def test_data_feed_desc(self):
data_feed = fluid.DataFeedDesc('./data.prototxt')
# assertEqueal(data_feed.proto_desc.batch, 2)
# assertEqual(len(data_feed.proto_desc.multi_slot_desc), 2)
self.assertEqual(" ".join(data_feed.desc().split()),
" ".join(proto_str.split()))
def test_run(self):
# Initialize dataset description
data_feed = fluid.DataFeedDesc('train_data/data.prototxt')
data_feed.set_batch_size(
128) # See API doc for how to change other fields
# define network
# input text data
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
# label data
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
avg_cost, acc, prediction = bow_net(data, label)
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.002)
opt_ops, weight_and_grad = sgd_optimizer.minimize(avg_cost)
# Run startup program
startup_program = fluid.default_startup_program()
place = fluid.CPUPlace()
executor = fluid.Executor(place)
executor.run(startup_program)
main_program = fluid.default_main_program()
async_executor = fluid.AsyncExecutor(place)
self.assertRaises(TypeError, async_executor.run)
self.assertRaises(TypeError, async_executor.run, main_program)
self.assertRaises(TypeError, async_executor.run, main_program,
data_feed)
filelist = ['train_data/part-%d' % i for i in range(10)]
self.assertRaises(TypeError, async_executor.run, main_program,
data_feed, filelist)
thread_num = 4
self.assertRaises(TypeError, async_executor.run, main_program,
data_feed, filelist, thread_num)
async_executor.run(main_program, data_feed, filelist, thread_num, [acc])
fluid.io.save_inference_model("imdb.model", [data.name, label.name],
[acc], executor)
statinfo = os.stat('imdb.model/__model__')
self.assertGreater(statinfo.st_size, 0)
os.remove('./data.prototxt')
shutil.rmtree('./train_data')
shutil.rmtree('./imdb.model')
if __name__ == '__main__':
unittest.main()