You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
6.8 KiB
188 lines
6.8 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import contextlib
|
|
import unittest
|
|
import numpy as np
|
|
import six
|
|
import sys
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid.optimizer import SGDOptimizer
|
|
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
|
|
from test_imperative_base import new_program_scope
|
|
from paddle.fluid.imperative.base import to_variable
|
|
|
|
|
|
class Discriminator(fluid.imperative.Layer):
|
|
def __init__(self):
|
|
super(Discriminator, self).__init__()
|
|
self._fc1 = FC(size=32, act='elu', name="d_fc1")
|
|
self._fc2 = FC(size=1, name="d_fc2")
|
|
|
|
def parameters(self):
|
|
return self._fc1.parameters() + self._fc2.parameters()
|
|
|
|
def forward(self, inputs):
|
|
x = self._fc1(inputs)
|
|
return self._fc2(x)
|
|
|
|
|
|
class Generator(fluid.imperative.Layer):
|
|
def __init__(self):
|
|
super(Generator, self).__init__()
|
|
self._fc1 = FC(size=64, act='elu', name="g_fc1")
|
|
self._fc2 = FC(size=64, act='elu', name="g_fc2")
|
|
self._fc3 = FC(size=1, name="g_fc3")
|
|
|
|
def parameters(self):
|
|
return self._fc1.parameters() + self._fc2.parameters(
|
|
) + self._fc3.parameters()
|
|
|
|
def forward(self, inputs):
|
|
x = self._fc1(inputs)
|
|
x = self._fc2(x)
|
|
return self._fc3(x)
|
|
|
|
|
|
class TestImperativeMnist(unittest.TestCase):
|
|
def test_gan_float32(self):
|
|
seed = 90
|
|
|
|
startup = fluid.Program()
|
|
startup.random_seed = seed
|
|
discriminate_p = fluid.Program()
|
|
generate_p = fluid.Program()
|
|
discriminate_p.random_seed = seed
|
|
generate_p.random_seed = seed
|
|
|
|
scope = fluid.core.Scope()
|
|
with new_program_scope(
|
|
main=discriminate_p, startup=startup, scope=scope):
|
|
discriminator = Discriminator()
|
|
generator = Generator()
|
|
|
|
img = fluid.layers.data(
|
|
name="img", shape=[2, 1], append_batch_size=False)
|
|
noise = fluid.layers.data(
|
|
name="noise", shape=[2, 2], append_batch_size=False)
|
|
|
|
d_real = discriminator(img)
|
|
d_loss_real = fluid.layers.reduce_mean(
|
|
fluid.layers.sigmoid_cross_entropy_with_logits(
|
|
x=d_real,
|
|
label=fluid.layers.fill_constant(
|
|
shape=[2, 1], dtype='float32', value=1.0)))
|
|
|
|
d_fake = discriminator(generator(noise))
|
|
d_loss_fake = fluid.layers.reduce_mean(
|
|
fluid.layers.sigmoid_cross_entropy_with_logits(
|
|
x=d_fake,
|
|
label=fluid.layers.fill_constant(
|
|
shape=[2, 1], dtype='float32', value=0.0)))
|
|
|
|
d_loss = d_loss_real + d_loss_fake
|
|
|
|
sgd = SGDOptimizer(learning_rate=1e-3)
|
|
sgd.minimize(d_loss)
|
|
|
|
with new_program_scope(main=generate_p, startup=startup, scope=scope):
|
|
discriminator = Discriminator()
|
|
generator = Generator()
|
|
|
|
noise = fluid.layers.data(
|
|
name="noise", shape=[2, 2], append_batch_size=False)
|
|
|
|
d_fake = discriminator(generator(noise))
|
|
g_loss = fluid.layers.reduce_mean(
|
|
fluid.layers.sigmoid_cross_entropy_with_logits(
|
|
x=d_fake,
|
|
label=fluid.layers.fill_constant(
|
|
shape=[2, 1], dtype='float32', value=1.0)))
|
|
|
|
sgd = SGDOptimizer(learning_rate=1e-3)
|
|
sgd.minimize(g_loss)
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
|
|
) else fluid.CUDAPlace(0))
|
|
static_params = dict()
|
|
with fluid.scope_guard(scope):
|
|
img = np.ones([2, 1], np.float32)
|
|
noise = np.ones([2, 2], np.float32)
|
|
exe.run(startup)
|
|
static_d_loss = exe.run(discriminate_p,
|
|
feed={'img': img,
|
|
'noise': noise},
|
|
fetch_list=[d_loss])[0]
|
|
static_g_loss = exe.run(generate_p,
|
|
feed={'noise': noise},
|
|
fetch_list=[g_loss])[0]
|
|
|
|
# generate_p contains all parameters needed.
|
|
for param in generate_p.global_block().all_parameters():
|
|
static_params[param.name] = np.array(
|
|
scope.find_var(param.name).get_tensor())
|
|
|
|
dy_params = dict()
|
|
with fluid.imperative.guard():
|
|
fluid.default_startup_program().random_seed = seed
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
discriminator = Discriminator()
|
|
generator = Generator()
|
|
sgd = SGDOptimizer(learning_rate=1e-3)
|
|
|
|
d_real = discriminator(to_variable(np.ones([2, 1], np.float32)))
|
|
d_loss_real = fluid.layers.reduce_mean(
|
|
fluid.layers.sigmoid_cross_entropy_with_logits(
|
|
x=d_real, label=to_variable(np.ones([2, 1], np.float32))))
|
|
|
|
d_fake = discriminator(
|
|
generator(to_variable(np.ones([2, 2], np.float32))))
|
|
d_loss_fake = fluid.layers.reduce_mean(
|
|
fluid.layers.sigmoid_cross_entropy_with_logits(
|
|
x=d_fake, label=to_variable(np.zeros([2, 1], np.float32))))
|
|
|
|
d_loss = d_loss_real + d_loss_fake
|
|
d_loss._backward()
|
|
sgd.minimize(d_loss)
|
|
discriminator.clear_gradients()
|
|
generator.clear_gradients()
|
|
|
|
d_fake = discriminator(
|
|
generator(to_variable(np.ones([2, 2], np.float32))))
|
|
g_loss = fluid.layers.reduce_mean(
|
|
fluid.layers.sigmoid_cross_entropy_with_logits(
|
|
x=d_fake, label=to_variable(np.ones([2, 1], np.float32))))
|
|
g_loss._backward()
|
|
sgd.minimize(g_loss)
|
|
for p in discriminator.parameters():
|
|
dy_params[p.name] = p._numpy()
|
|
for p in generator.parameters():
|
|
dy_params[p.name] = p._numpy()
|
|
|
|
dy_g_loss = g_loss._numpy()
|
|
dy_d_loss = d_loss._numpy()
|
|
|
|
self.assertEqual(dy_g_loss, static_g_loss)
|
|
self.assertEqual(dy_d_loss, static_d_loss)
|
|
for k, v in six.iteritems(dy_params):
|
|
self.assertTrue(np.allclose(v, static_params[k]))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|