You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
211 lines
7.4 KiB
211 lines
7.4 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import contextlib
|
|
import unittest
|
|
import numpy as np
|
|
import six
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import core
|
|
from paddle.fluid.optimizer import SGDOptimizer
|
|
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
|
|
from paddle.fluid.imperative.base import to_variable
|
|
from test_imperative_base import new_program_scope
|
|
|
|
|
|
class SimpleImgConvPool(fluid.imperative.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
filter_size,
|
|
pool_size,
|
|
pool_stride,
|
|
pool_padding=0,
|
|
pool_type='max',
|
|
global_pooling=False,
|
|
conv_stride=1,
|
|
conv_padding=0,
|
|
conv_dilation=1,
|
|
conv_groups=1,
|
|
act=None,
|
|
use_cudnn=False,
|
|
param_attr=None,
|
|
bias_attr=None):
|
|
super(SimpleImgConvPool, self).__init__()
|
|
|
|
self._conv2d = Conv2D(
|
|
num_channels=num_channels,
|
|
num_filters=num_filters,
|
|
filter_size=filter_size,
|
|
stride=conv_stride,
|
|
padding=conv_padding,
|
|
dilation=conv_dilation,
|
|
groups=conv_groups,
|
|
param_attr=None,
|
|
bias_attr=None,
|
|
use_cudnn=use_cudnn)
|
|
|
|
self._pool2d = Pool2D(
|
|
pool_size=pool_size,
|
|
pool_type=pool_type,
|
|
pool_stride=pool_stride,
|
|
pool_padding=pool_padding,
|
|
global_pooling=global_pooling,
|
|
use_cudnn=use_cudnn)
|
|
|
|
def forward(self, inputs):
|
|
x = self._conv2d(inputs)
|
|
x = self._pool2d(x)
|
|
return x
|
|
|
|
|
|
class MNIST(fluid.imperative.Layer):
|
|
def __init__(self, param_attr=None, bias_attr=None):
|
|
super(MNIST, self).__init__()
|
|
|
|
self._simple_img_conv_pool_1 = SimpleImgConvPool(
|
|
1, 20, 5, 2, 2, act="relu")
|
|
|
|
self._simple_img_conv_pool_2 = SimpleImgConvPool(
|
|
20, 50, 5, 2, 2, act="relu")
|
|
|
|
pool_2_shape = 50 * 4 * 4
|
|
SIZE = 10
|
|
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
|
|
self._fc = FC(10,
|
|
param_attr=fluid.param_attr.ParamAttr(
|
|
initializer=fluid.initializer.NormalInitializer(
|
|
loc=0.0, scale=scale)),
|
|
act="softmax")
|
|
|
|
def forward(self, inputs):
|
|
x = self._simple_img_conv_pool_1(inputs)
|
|
x = self._simple_img_conv_pool_2(x)
|
|
x = self._fc(x)
|
|
return x
|
|
|
|
|
|
class TestImperativeMnist(unittest.TestCase):
|
|
def test_mnist_float32(self):
|
|
seed = 90
|
|
batch_num = 2
|
|
with fluid.imperative.guard():
|
|
fluid.default_startup_program().random_seed = seed
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
mnist = MNIST()
|
|
sgd = SGDOptimizer(learning_rate=1e-3)
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.mnist.train(), batch_size=128)
|
|
|
|
dy_param_init_value = {}
|
|
for batch_id, data in enumerate(train_reader()):
|
|
if batch_id >= batch_num:
|
|
break
|
|
|
|
dy_x_data = np.array(
|
|
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
|
|
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
|
|
128, 1)
|
|
|
|
img = to_variable(dy_x_data)
|
|
label = to_variable(y_data)
|
|
label._stop_gradient = True
|
|
|
|
cost = mnist(img)
|
|
loss = fluid.layers.cross_entropy(cost, label)
|
|
avg_loss = fluid.layers.mean(loss)
|
|
dy_out = avg_loss._numpy()
|
|
|
|
if batch_id == 0:
|
|
for param in fluid.default_main_program().global_block(
|
|
).all_parameters():
|
|
dy_param_init_value[param.name] = param._numpy()
|
|
|
|
avg_loss._backward()
|
|
sgd.minimize(avg_loss)
|
|
mnist.clear_gradients()
|
|
dy_param_value = {}
|
|
for param in fluid.default_main_program().global_block(
|
|
).all_parameters():
|
|
dy_param_value[param.name] = param._numpy()
|
|
|
|
with new_program_scope():
|
|
fluid.default_startup_program().random_seed = seed
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace(
|
|
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
|
|
|
|
mnist = MNIST()
|
|
sgd = SGDOptimizer(learning_rate=1e-3)
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.mnist.train(), batch_size=128)
|
|
|
|
img = fluid.layers.data(
|
|
name='pixel', shape=[1, 28, 28], dtype='float32')
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
cost = mnist(img)
|
|
loss = fluid.layers.cross_entropy(cost, label)
|
|
avg_loss = fluid.layers.mean(loss)
|
|
sgd.minimize(avg_loss)
|
|
|
|
# initialize params and fetch them
|
|
static_param_init_value = {}
|
|
static_param_name_list = []
|
|
for param in fluid.default_startup_program().global_block(
|
|
).all_parameters():
|
|
static_param_name_list.append(param.name)
|
|
|
|
out = exe.run(fluid.default_startup_program(),
|
|
fetch_list=static_param_name_list)
|
|
|
|
for i in range(len(static_param_name_list)):
|
|
static_param_init_value[static_param_name_list[i]] = out[i]
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
if batch_id >= batch_num:
|
|
break
|
|
|
|
static_x_data = np.array(
|
|
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
|
|
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
|
|
[128, 1])
|
|
|
|
fetch_list = [avg_loss.name]
|
|
fetch_list.extend(static_param_name_list)
|
|
out = exe.run(fluid.default_main_program(),
|
|
feed={"pixel": static_x_data,
|
|
"label": y_data},
|
|
fetch_list=fetch_list)
|
|
|
|
static_param_value = {}
|
|
static_out = out[0]
|
|
for i in range(1, len(out)):
|
|
static_param_value[static_param_name_list[i - 1]] = out[i]
|
|
|
|
for key, value in six.iteritems(static_param_init_value):
|
|
self.assertTrue(np.allclose(value, dy_param_init_value[key]))
|
|
|
|
self.assertTrue(np.allclose(static_out, dy_out))
|
|
|
|
for key, value in six.iteritems(static_param_value):
|
|
self.assertTrue(np.allclose(value, dy_param_value[key]))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|