You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py

351 lines
15 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
from paddle.fluid.imperative.nn import Embedding
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.base import to_variable
from test_imperative_base import new_program_scope
import numpy as np
import six
from paddle.fluid.backward import append_backward
class SimpleLSTMRNN(fluid.imperative.Layer):
def __init__(self,
hidden_size,
num_steps,
num_layers=2,
init_scale=0.1,
dropout=None):
super(SimpleLSTMRNN, self).__init__()
self._hidden_size = hidden_size
self._num_layers = num_layers
self._init_scale = init_scale
self._dropout = dropout
self._input = None
self._num_steps = num_steps
def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
self.weight_1_arr = []
self.weight_2_arr = []
self.bias_arr = []
self.hidden_array = []
self.cell_array = []
self.mask_array = []
for i in range(self._num_layers):
weight_1 = fluid.layers.create_parameter(
shape=[self._hidden_size * 2, self._hidden_size * 4],
dtype="float32",
name="fc_weight1_" + str(i),
default_initializer=fluid.initializer.UniformInitializer(
low=-self._init_scale, high=self._init_scale))
self.weight_1_arr.append(weight_1)
bias_1 = fluid.layers.create_parameter(
[self._hidden_size * 4],
dtype="float32",
name="fc_bias1_" + str(i),
default_initializer=fluid.initializer.Constant(0.0))
self.bias_arr.append(bias_1)
pre_hidden = fluid.layers.slice(
init_hidden, axes=[0], starts=[i], ends=[i + 1])
pre_cell = fluid.layers.slice(
init_cell, axes=[0], starts=[i], ends=[i + 1])
pre_hidden = fluid.layers.reshape(
pre_hidden, shape=[-1, self._hidden_size])
pre_cell = fluid.layers.reshape(
pre_cell, shape=[-1, self._hidden_size])
self.hidden_array.append(pre_hidden)
self.cell_array.append(pre_cell)
def parameters(self):
parameters = list()
for param in self.weight_1_arr:
parameters.append(param)
for param in self.weight_2_arr:
parameters.append(param)
for bias in self.bias_arr:
parameters.append(bias)
return parameters
def forward(self, input_embedding, init_hidden=None, init_cell=None):
res = []
for index in range(self._num_steps):
self._input = fluid.layers.slice(
input_embedding, axes=[1], starts=[index], ends=[index + 1])
self._input = fluid.layers.reshape(
self._input, shape=[-1, self._hidden_size])
for k in range(self._num_layers):
pre_hidden = self.hidden_array[k]
pre_cell = self.cell_array[k]
weight_1 = self.weight_1_arr[k]
bias = self.bias_arr[k]
nn = fluid.layers.concat([self._input, pre_hidden], 1)
gate_input = fluid.layers.matmul(x=nn, y=weight_1)
gate_input = fluid.layers.elementwise_add(gate_input, bias)
i, j, f, o = fluid.layers.split(
gate_input, num_or_sections=4, dim=-1)
c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
i) * fluid.layers.tanh(j)
m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
self.hidden_array[k] = m
self.cell_array[k] = c
self._input = m
if self._dropout is not None and self._dropout > 0.0:
self._input = fluid.layers.dropout(
self._input,
dropout_prob=self._dropout,
dropout_implementation='upscale_in_train')
res.append(
fluid.layers.reshape(
self._input, shape=[1, -1, self._hidden_size]))
real_res = fluid.layers.concat(res, 0)
real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
last_hidden = fluid.layers.concat(self.hidden_array, 1)
last_hidden = fluid.layers.reshape(
last_hidden, shape=[-1, self._num_layers, self._hidden_size])
last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
last_cell = fluid.layers.concat(self.cell_array, 1)
last_cell = fluid.layers.reshape(
last_cell, shape=[-1, self._num_layers, self._hidden_size])
last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
return real_res, last_hidden, last_cell
class PtbModel(fluid.imperative.Layer):
def __init__(self,
hidden_size,
vocab_size,
num_layers=2,
num_steps=20,
init_scale=0.1,
dropout=None):
super(PtbModel, self).__init__()
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.init_scale = init_scale
self.num_layers = num_layers
self.num_steps = num_steps
self.dropout = dropout
self.simple_lstm_rnn = SimpleLSTMRNN(
hidden_size,
num_steps,
num_layers=num_layers,
init_scale=init_scale,
dropout=dropout)
self.embedding = Embedding(
size=[vocab_size, hidden_size],
dtype='float32',
is_sparse=False,
param_attr=fluid.ParamAttr(
name='embedding_para',
initializer=fluid.initializer.UniformInitializer(
low=-init_scale, high=init_scale)))
self.softmax_weight = fluid.layers.create_parameter(
[self.hidden_size, self.vocab_size],
dtype="float32",
name="softmax_weight",
default_initializer=fluid.initializer.UniformInitializer(
low=-self.init_scale, high=self.init_scale))
self.softmax_bias = fluid.layers.create_parameter(
[self.vocab_size],
dtype="float32",
name='softmax_bias',
default_initializer=fluid.initializer.UniformInitializer(
low=-self.init_scale, high=self.init_scale))
def _build_once(self, input, label, init_hidden, init_cell):
pass
def parameters(self):
parameters = self.simple_lstm_rnn.parameters() + [
self.softmax_weight, self.softmax_bias
] + self.embedding.parameters()
return parameters
def forward(self, input, label, init_hidden, init_cell):
init_h = fluid.layers.reshape(
init_hidden, shape=[self.num_layers, -1, self.hidden_size])
init_c = fluid.layers.reshape(
init_cell, shape=[self.num_layers, -1, self.hidden_size])
x_emb = self.embedding(input)
x_emb = fluid.layers.reshape(
x_emb, shape=[-1, self.num_steps, self.hidden_size])
if self.dropout is not None and self.dropout > 0.0:
x_emb = fluid.layers.dropout(
x_emb,
dropout_prob=self.drop_out,
dropout_implementation='upscale_in_train')
rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
init_c)
rnn_out = fluid.layers.reshape(
rnn_out, shape=[-1, self.num_steps, self.hidden_size])
projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
projection = fluid.layers.reshape(
projection, shape=[-1, self.vocab_size])
projection = fluid.layers.reshape(
projection, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False)
loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
loss = fluid.layers.reduce_mean(loss, dim=[0])
loss = fluid.layers.reduce_sum(loss)
loss.permissions = True
return loss, last_hidden, last_cell
class TestImperativePtbRnn(unittest.TestCase):
def test_ptb_rnn_cpu_float32(self):
seed = 90
hidden_size = 10
vocab_size = 1000
num_layers = 1
num_steps = 3
init_scale = 0.1
batch_size = 4
with fluid.imperative.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
# TODO: marsyang1993 Change seed to
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
sgd = SGDOptimizer(learning_rate=1e-3)
dy_param_updated = dict()
dy_param_init = dict()
dy_loss = None
last_hidden = None
last_cell = None
for i in range(2):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
x_data = x_data.reshape((-1, num_steps, 1))
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
x = to_variable(x_data)
y = to_variable(y_data)
init_hidden = to_variable(init_hidden_data)
init_cell = to_variable(init_cell_data)
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
if i == 0:
for param in ptb_model.parameters():
dy_param_init[param.name] = param._numpy()
dy_loss._backward()
sgd.minimize(dy_loss)
for param in ptb_model.parameters():
dy_param_updated[param.name] = param._numpy()
with new_program_scope():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
# TODO: marsyang1993 Change seed to
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
exe = fluid.Executor(fluid.CPUPlace())
sgd = SGDOptimizer(learning_rate=1e-3)
x = fluid.layers.data(name="x", shape=[-1, 3, 1], dtype='int64')
y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
init_hidden = fluid.layers.data(
name="init_hidden", shape=[1], dtype='float32')
init_cell = fluid.layers.data(
name="init_cell", shape=[1], dtype='float32')
static_loss, static_last_hidden, static_last_cell = ptb_model(
x, y, init_hidden, init_cell)
sgd.minimize(static_loss)
static_param_updated = dict()
static_param_init = dict()
static_param_name_list = list()
for param in ptb_model.parameters():
static_param_name_list.append(param.name)
out = exe.run(framework.default_startup_program(),
fetch_list=static_param_name_list)
for i in range(len(static_param_name_list)):
static_param_init[static_param_name_list[i]] = out[i]
static_loss_value = None
static_last_cell_value = None
static_last_hidden_value = None
for i in range(2):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
x_data = x_data.reshape((-1, num_steps, 1))
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
fetch_list = [static_loss, static_last_hidden, static_last_cell]
fetch_list.extend(static_param_name_list)
out = exe.run(fluid.default_main_program(),
feed={
"x": x_data,
"y": y_data,
"init_hidden": init_hidden_data,
"init_cell": init_cell_data
},
fetch_list=fetch_list)
static_loss_value = out[0]
static_last_cell_value = out[1]
static_last_hidden_value = out[2]
for k in range(3, len(out)):
static_param_updated[static_param_name_list[k - 3]] = out[k]
self.assertTrue(
np.allclose(static_loss_value.all(), dy_loss._numpy().all()))
self.assertTrue(
np.allclose(static_last_cell_value.all(),
last_cell._numpy().all()))
self.assertTrue(
np.allclose(static_last_hidden_value.all(),
last_hidden._numpy().all()))
for key, value in six.iteritems(static_param_init):
self.assertTrue(
np.allclose(value.all(), dy_param_init[key].all()))
for key, value in six.iteritems(static_param_updated):
self.assertTrue(
np.allclose(value.all(), dy_param_updated[key].all()))
if __name__ == '__main__':
unittest.main()