You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
98 lines
2.3 KiB
98 lines
2.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestInf(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "isinf"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
|
|
x[0] = np.inf
|
|
x[-1] = np.inf
|
|
|
|
self.inputs = {'X': x}
|
|
self.outputs = {'Out': np.array(True).astype(self.dtype)}
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
def test_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestFP16Inf(TestInf):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
|
|
class TestNAN(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "isnan"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
|
|
x[0] = np.nan
|
|
x[-1] = np.nan
|
|
|
|
self.inputs = {'X': x}
|
|
self.outputs = {'Out': np.array(True).astype(self.dtype)}
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
def test_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestFP16NAN(TestNAN):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
|
|
class TestIsfinite(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "isfinite"
|
|
self.dtype = np.float32
|
|
self.init_dtype()
|
|
|
|
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
|
|
x[0] = np.inf
|
|
x[-1] = np.nan
|
|
out = np.isinf(x) | np.isnan(x)
|
|
|
|
self.inputs = {'X': x}
|
|
self.outputs = {'Out': np.array(False).astype(self.dtype)}
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
def test_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestFP16Isfinite(TestIsfinite):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|