You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
5.1 KiB
156 lines
5.1 KiB
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
imikolov's simple dataset.
|
|
|
|
This module will download dataset from
|
|
http://www.fit.vutbr.cz/~imikolov/rnnlm/ and parse training set and test set
|
|
into paddle reader creators.
|
|
"""
|
|
|
|
from __future__ import print_function
|
|
|
|
import paddle.dataset.common
|
|
import collections
|
|
import tarfile
|
|
import six
|
|
|
|
__all__ = ['train', 'test', 'build_dict']
|
|
|
|
#URL = 'http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz'
|
|
URL = 'https://dataset.bj.bcebos.com/imikolov%2Fsimple-examples.tgz'
|
|
MD5 = '30177ea32e27c525793142b6bf2c8e2d'
|
|
|
|
|
|
class DataType(object):
|
|
NGRAM = 1
|
|
SEQ = 2
|
|
|
|
|
|
def word_count(f, word_freq=None):
|
|
if word_freq is None:
|
|
word_freq = collections.defaultdict(int)
|
|
|
|
for l in f:
|
|
for w in l.strip().split():
|
|
word_freq[w] += 1
|
|
word_freq['<s>'] += 1
|
|
word_freq['<e>'] += 1
|
|
|
|
return word_freq
|
|
|
|
|
|
def build_dict(min_word_freq=50):
|
|
"""
|
|
Build a word dictionary from the corpus, Keys of the dictionary are words,
|
|
and values are zero-based IDs of these words.
|
|
"""
|
|
train_filename = './simple-examples/data/ptb.train.txt'
|
|
test_filename = './simple-examples/data/ptb.valid.txt'
|
|
with tarfile.open(
|
|
paddle.dataset.common.download(paddle.dataset.imikolov.URL,
|
|
'imikolov',
|
|
paddle.dataset.imikolov.MD5)) as tf:
|
|
trainf = tf.extractfile(train_filename)
|
|
testf = tf.extractfile(test_filename)
|
|
word_freq = word_count(testf, word_count(trainf))
|
|
if '<unk>' in word_freq:
|
|
# remove <unk> for now, since we will set it as last index
|
|
del word_freq['<unk>']
|
|
|
|
word_freq = [
|
|
x for x in six.iteritems(word_freq) if x[1] > min_word_freq
|
|
]
|
|
|
|
word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
|
|
words, _ = list(zip(*word_freq_sorted))
|
|
word_idx = dict(list(zip(words, six.moves.range(len(words)))))
|
|
word_idx['<unk>'] = len(words)
|
|
|
|
return word_idx
|
|
|
|
|
|
def reader_creator(filename, word_idx, n, data_type):
|
|
def reader():
|
|
with tarfile.open(
|
|
paddle.dataset.common.download(
|
|
paddle.dataset.imikolov.URL, 'imikolov',
|
|
paddle.dataset.imikolov.MD5)) as tf:
|
|
f = tf.extractfile(filename)
|
|
|
|
UNK = word_idx['<unk>']
|
|
for l in f:
|
|
if DataType.NGRAM == data_type:
|
|
assert n > -1, 'Invalid gram length'
|
|
l = ['<s>'] + l.strip().split() + ['<e>']
|
|
if len(l) >= n:
|
|
l = [word_idx.get(w, UNK) for w in l]
|
|
for i in six.moves.range(n, len(l) + 1):
|
|
yield tuple(l[i - n:i])
|
|
elif DataType.SEQ == data_type:
|
|
l = l.strip().split()
|
|
l = [word_idx.get(w, UNK) for w in l]
|
|
src_seq = [word_idx['<s>']] + l
|
|
trg_seq = l + [word_idx['<e>']]
|
|
if n > 0 and len(src_seq) > n: continue
|
|
yield src_seq, trg_seq
|
|
else:
|
|
assert False, 'Unknow data type'
|
|
|
|
return reader
|
|
|
|
|
|
def train(word_idx, n, data_type=DataType.NGRAM):
|
|
"""
|
|
imikolov training set creator.
|
|
|
|
It returns a reader creator, each sample in the reader is a word ID
|
|
tuple.
|
|
|
|
:param word_idx: word dictionary
|
|
:type word_idx: dict
|
|
:param n: sliding window size if type is ngram, otherwise max length of sequence
|
|
:type n: int
|
|
:param data_type: data type (ngram or sequence)
|
|
:type data_type: member variable of DataType (NGRAM or SEQ)
|
|
:return: Training reader creator
|
|
:rtype: callable
|
|
"""
|
|
return reader_creator('./simple-examples/data/ptb.train.txt', word_idx, n,
|
|
data_type)
|
|
|
|
|
|
def test(word_idx, n, data_type=DataType.NGRAM):
|
|
"""
|
|
imikolov test set creator.
|
|
|
|
It returns a reader creator, each sample in the reader is a word ID
|
|
tuple.
|
|
|
|
:param word_idx: word dictionary
|
|
:type word_idx: dict
|
|
:param n: sliding window size if type is ngram, otherwise max length of sequence
|
|
:type n: int
|
|
:param data_type: data type (ngram or sequence)
|
|
:type data_type: member variable of DataType (NGRAM or SEQ)
|
|
:return: Test reader creator
|
|
:rtype: callable
|
|
"""
|
|
return reader_creator('./simple-examples/data/ptb.valid.txt', word_idx, n,
|
|
data_type)
|
|
|
|
|
|
def fetch():
|
|
paddle.dataset.common.download(URL, "imikolov", MD5)
|