You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/dataset/movielens.py

264 lines
7.4 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Movielens 1-M dataset.
Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000
movies, which was collected by GroupLens Research. This module will download
Movielens 1-M dataset from
http://files.grouplens.org/datasets/movielens/ml-1m.zip and parse training
set and test set into paddle reader creators.
"""
from __future__ import print_function
import numpy as np
import zipfile
import paddle.dataset.common
import re
import random
import functools
import six
import paddle.compat as cpt
__all__ = [
'train', 'test', 'get_movie_title_dict', 'max_movie_id', 'max_user_id',
'age_table', 'movie_categories', 'max_job_id', 'user_info', 'movie_info'
]
age_table = [1, 18, 25, 35, 45, 50, 56]
#URL = 'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
URL = 'https://dataset.bj.bcebos.com/movielens%2Fml-1m.zip'
MD5 = 'c4d9eecfca2ab87c1945afe126590906'
class MovieInfo(object):
"""
Movie id, title and categories information are stored in MovieInfo.
"""
def __init__(self, index, categories, title):
self.index = int(index)
self.categories = categories
self.title = title
def value(self):
"""
Get information from a movie.
"""
return [
self.index, [CATEGORIES_DICT[c] for c in self.categories],
[MOVIE_TITLE_DICT[w.lower()] for w in self.title.split()]
]
def __str__(self):
return "<MovieInfo id(%d), title(%s), categories(%s)>" % (
self.index, self.title, self.categories)
def __repr__(self):
return self.__str__()
class UserInfo(object):
"""
User id, gender, age, and job information are stored in UserInfo.
"""
def __init__(self, index, gender, age, job_id):
self.index = int(index)
self.is_male = gender == 'M'
self.age = age_table.index(int(age))
self.job_id = int(job_id)
def value(self):
"""
Get information from a user.
"""
return [self.index, 0 if self.is_male else 1, self.age, self.job_id]
def __str__(self):
return "<UserInfo id(%d), gender(%s), age(%d), job(%d)>" % (
self.index, "M"
if self.is_male else "F", age_table[self.age], self.job_id)
def __repr__(self):
return str(self)
MOVIE_INFO = None
MOVIE_TITLE_DICT = None
CATEGORIES_DICT = None
USER_INFO = None
def __initialize_meta_info__():
fn = paddle.dataset.common.download(URL, "movielens", MD5)
global MOVIE_INFO
if MOVIE_INFO is None:
pattern = re.compile(r'^(.*)\((\d+)\)$')
with zipfile.ZipFile(file=fn) as package:
for info in package.infolist():
assert isinstance(info, zipfile.ZipInfo)
MOVIE_INFO = dict()
title_word_set = set()
categories_set = set()
with package.open('ml-1m/movies.dat') as movie_file:
for i, line in enumerate(movie_file):
line = cpt.to_text(line, encoding='latin')
movie_id, title, categories = line.strip().split('::')
categories = categories.split('|')
for c in categories:
categories_set.add(c)
title = pattern.match(title).group(1)
MOVIE_INFO[int(movie_id)] = MovieInfo(
index=movie_id, categories=categories, title=title)
for w in title.split():
title_word_set.add(w.lower())
global MOVIE_TITLE_DICT
MOVIE_TITLE_DICT = dict()
for i, w in enumerate(title_word_set):
MOVIE_TITLE_DICT[w] = i
global CATEGORIES_DICT
CATEGORIES_DICT = dict()
for i, c in enumerate(categories_set):
CATEGORIES_DICT[c] = i
global USER_INFO
USER_INFO = dict()
with package.open('ml-1m/users.dat') as user_file:
for line in user_file:
line = cpt.to_text(line, encoding='latin')
uid, gender, age, job, _ = line.strip().split("::")
USER_INFO[int(uid)] = UserInfo(
index=uid, gender=gender, age=age, job_id=job)
return fn
def __reader__(rand_seed=0, test_ratio=0.1, is_test=False):
fn = __initialize_meta_info__()
np.random.seed(rand_seed)
with zipfile.ZipFile(file=fn) as package:
with package.open('ml-1m/ratings.dat') as rating:
for line in rating:
line = cpt.to_text(line, encoding='latin')
if (np.random.random() < test_ratio) == is_test:
uid, mov_id, rating, _ = line.strip().split("::")
uid = int(uid)
mov_id = int(mov_id)
rating = float(rating) * 2 - 5.0
mov = MOVIE_INFO[mov_id]
usr = USER_INFO[uid]
yield usr.value() + mov.value() + [[rating]]
def __reader_creator__(**kwargs):
return lambda: __reader__(**kwargs)
train = functools.partial(__reader_creator__, is_test=False)
test = functools.partial(__reader_creator__, is_test=True)
def get_movie_title_dict():
"""
Get movie title dictionary.
"""
__initialize_meta_info__()
return MOVIE_TITLE_DICT
def __max_index_info__(a, b):
if a.index > b.index:
return a
else:
return b
def max_movie_id():
"""
Get the maximum value of movie id.
"""
__initialize_meta_info__()
return six.moves.reduce(__max_index_info__, list(MOVIE_INFO.values())).index
def max_user_id():
"""
Get the maximum value of user id.
"""
__initialize_meta_info__()
return six.moves.reduce(__max_index_info__, list(USER_INFO.values())).index
def __max_job_id_impl__(a, b):
if a.job_id > b.job_id:
return a
else:
return b
def max_job_id():
"""
Get the maximum value of job id.
"""
__initialize_meta_info__()
return six.moves.reduce(__max_job_id_impl__,
list(USER_INFO.values())).job_id
def movie_categories():
"""
Get movie categories dictionary.
"""
__initialize_meta_info__()
return CATEGORIES_DICT
def user_info():
"""
Get user info dictionary.
"""
__initialize_meta_info__()
return USER_INFO
def movie_info():
"""
Get movie info dictionary.
"""
__initialize_meta_info__()
return MOVIE_INFO
def unittest():
for train_count, _ in enumerate(train()()):
pass
for test_count, _ in enumerate(test()()):
pass
print(train_count, test_count)
def fetch():
paddle.dataset.common.download(URL, "movielens", MD5)
if __name__ == '__main__':
unittest()