You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/device.py

198 lines
6.2 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define the functions to manipulate devices
import re
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.fluid.framework import is_compiled_with_cuda #DEFINE_ALIAS
__all__ = [
'get_cudnn_version',
'set_device',
'get_device',
'XPUPlace',
'is_compiled_with_xpu'
# 'cpu_places',
# 'CPUPlace',
# 'cuda_pinned_places',
# 'cuda_places',
# 'CUDAPinnedPlace',
# 'CUDAPlace',
'is_compiled_with_cuda'
]
_cudnn_version = None
def is_compiled_with_xpu():
"""
Whether paddle was built with WITH_XPU=ON to support Baidu Kunlun
Returns (bool): whether paddle was built with WITH_XPU=ON
Examples:
.. code-block:: python
import paddle
support_xpu = paddle.device.is_compiled_with_xpu()
"""
return core.is_compiled_with_xpu()
def XPUPlace(dev_id):
"""
Return a Baidu Kunlun Place
Parameters:
dev_id(int): Baidu Kunlun device id
Examples:
.. code-block:: python
import paddle
place = paddle.device.XPUPlace(0)
"""
return core.XPUPlace(dev_id)
def get_cudnn_version():
"""
This funciton return the version of cudnn. the retuen value is int which represents the
cudnn version. For example, if it return 7600, it represents the version of cudnn is 7.6.
Returns:
int: A int value which represents the cudnn version. If cudnn version is not installed, it return None.
Examples:
.. code-block:: python
import paddle
cudnn_version = get_cudnn_version()
"""
global _cudnn_version
if not core.is_compiled_with_cuda():
return None
if _cudnn_version is None:
cudnn_version = int(core.cudnn_version())
_cudnn_version = cudnn_version
if _cudnn_version < 0:
return None
else:
return cudnn_version
else:
return _cudnn_version
def set_device(device):
"""
Paddle supports running calculations on various types of devices, including CPU, GPU and XPU.
They are represented by string identifiers. This function can specify the global device
which the OP will run.
Parameters:
device(str): This parameter determines the specific running device.
It can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
index of the GPUs or XPUs.
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
paddle.set_device("cpu")
x1 = paddle.ones(name='x1', shape=[1, 2], dtype='int32')
x2 = paddle.zeros(name='x2', shape=[1, 2], dtype='int32')
data = paddle.stack([x1,x2], axis=1)
"""
lower_device = device.lower()
if lower_device == 'cpu':
place = core.CPUPlace()
elif lower_device == 'gpu':
if not core.is_compiled_with_cuda():
raise ValueError(
"The device should not be 'gpu', " \
"since PaddlePaddle is not compiled with CUDA")
place = core.CUDAPlace(ParallelEnv().dev_id)
elif lower_device == 'xpu':
if not core.is_compiled_with_xpu():
raise ValueError(
"The device should not be 'xpu', " \
"since PaddlePaddle is not compiled with XPU")
place = core.XPUPlace(ParallelEnv().dev_id)
else:
avaliable_gpu_device = re.match(r'gpu:\d+', lower_device)
avaliable_xpu_device = re.match(r'xpu:\d+', lower_device)
if not avaliable_gpu_device and not avaliable_xpu_device:
raise ValueError(
"The device must be a string which is like 'cpu', 'gpu', 'gpu:x', 'xpu' or 'xpu:x'"
)
if avaliable_gpu_device:
if not core.is_compiled_with_cuda():
raise ValueError(
"The device should not be {}, since PaddlePaddle is " \
"not compiled with CUDA".format(avaliable_gpu_device))
device_info_list = device.split(':', 1)
device_id = device_info_list[1]
device_id = int(device_id)
place = core.CUDAPlace(device_id)
if avaliable_xpu_device:
if not core.is_compiled_with_xpu():
raise ValueError(
"The device should not be {}, since PaddlePaddle is " \
"not compiled with XPU".format(avaliable_xpu_device))
device_info_list = device.split(':', 1)
device_id = device_info_list[1]
device_id = int(device_id)
place = core.XPUPlace(device_id)
framework._set_expected_place(place)
return place
def get_device():
"""
This funciton can get the current global device of the program is running.
It's a string which is like 'cpu', 'gpu:x' and 'xpu:x'. if the global device is not
set, it will return a string which is 'gpu:x' when cuda is avaliable or it
will return a string which is 'cpu' when cuda is not avaliable.
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
device = paddle.get_device()
"""
device = ''
place = framework._current_expected_place()
if isinstance(place, core.CPUPlace):
device = 'cpu'
elif isinstance(place, core.CUDAPlace):
device_id = place.get_device_id()
device = 'gpu:' + str(device_id)
elif isinstance(place, core.XPUPlace):
device_id = place.get_device_id()
device = 'xpu:' + str(device_id)
return device