You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/distributed/parallel.py

225 lines
7.3 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import six
import warnings
from multiprocessing import Process, Manager
import time
import sys
from paddle import compat as cpt
# deprecated module import
from paddle.fluid import core
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
__all__ = ["init_parallel_env"]
ParallelStrategy = core.ParallelStrategy
def _start_kv_server(port, http_server_d):
from paddle.distributed.fleet.utils.http_server import KVServer
http_server = KVServer(int(port))
http_server.start()
wait_seconds = 5
while http_server_d.get("running", False):
time.sleep(wait_seconds)
http_server.stop()
def init_parallel_env():
"""
Initialize parallel training environment in dynamic graph mode.
.. note::
Now only supports initializing the GPU parallel training
environment and using NCCL for communication.
Returns:
None
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
import paddle.distributed as dist
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear1 = nn.Linear(10, 10)
self._linear2 = nn.Linear(10, 1)
def forward(self, x):
return self._linear2(self._linear1(x))
def train():
# 1. enable dynamic mode
paddle.disable_static()
# 2. initialize parallel environment
dist.init_parallel_env()
# 3. create data parallel layer & optimizer
layer = LinearNet()
dp_layer = paddle.DataParallel(layer)
loss_fn = nn.MSELoss()
adam = opt.Adam(
learning_rate=0.001, parameters=dp_layer.parameters())
# 4. run layer
inputs = paddle.randn([10, 10], 'float32')
outputs = dp_layer(inputs)
labels = paddle.randn([10, 1], 'float32')
loss = loss_fn(outputs, labels)
loss.backward()
adam.step()
adam.clear_grad()
if __name__ == '__main__':
dist.spawn(train)
"""
# 1. gpu check
if not core.is_compiled_with_cuda():
raise NotImplementedError(
"Cannot initialize parallel environment in CPU-only version, now only "
"supports initializing the GPU parallel environment. Please recompile "
"or reinstall paddle with GPU support.")
# 2. check env
def _check_var_exists(var_name):
var = os.environ.get(var_name, None)
if var is None:
raise ValueError("paddle.distributed initialize error, "
"environment variable %s is needed, but not set." %
var_name)
_check_var_exists("FLAGS_selected_gpus")
_check_var_exists("PADDLE_TRAINER_ID")
_check_var_exists("PADDLE_CURRENT_ENDPOINT")
_check_var_exists("PADDLE_TRAINERS_NUM")
_check_var_exists("PADDLE_TRAINER_ENDPOINTS")
if ParallelEnv().world_size < 2:
return
# 3: init gloo context
ep_rank_0 = ParallelEnv().trainer_endpoints[0].split(":")
ep_rank = ParallelEnv().trainer_endpoints[ParallelEnv().rank].split(":")
manager = Manager()
# glboal dict to store status
http_server_d = manager.dict()
http_server_d["running"] = False
if ParallelEnv().rank == 0:
http_server = Process(
target=_start_kv_server, args=(int(ep_rank_0[1]), http_server_d))
http_server.daemon = True
http_server_d["running"] = True
http_server.start()
wait_server_ready([ParallelEnv().trainer_endpoints[0]])
gloo_strategy = core.GlooParallelStrategy()
gloo_strategy.rank = ParallelEnv().rank
gloo_strategy.rank_num = ParallelEnv().world_size
gloo_strategy.ip_address = ep_rank_0[0]
gloo_strategy.ip_port = int(ep_rank_0[1])
default_init_timeout_seconds = 3600
default_run_timeout_seconds = 9999999
gloo_strategy.init_seconds = default_init_timeout_seconds
gloo_strategy.run_seconds = default_run_timeout_seconds
gloo = core.GlooParallelContext(gloo_strategy)
gloo.init()
if ParallelEnv().rank == 0:
http_server_d["running"] = False
http_server.join()
# 4. init NCCL ParallelStrategy
strategy = ParallelStrategy()
if parallel_helper._is_parallel_ctx_initialized():
warnings.warn("The parallel environment has been initialized.")
strategy.nranks = ParallelEnv().world_size
strategy.local_rank = ParallelEnv().rank
strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
strategy.current_endpoint = ParallelEnv().current_endpoint
# NOTE(chenweihang): [ why config global place here? ]
# the dygraph mode will be set to default mode,
# users will not call `dygraph.guard` or `enable_dygraph`
# directly, if they want to switch default place,
# they need to call a function to change default place,
# here just set correctly place to users
place = core.CUDAPlace(ParallelEnv().device_id)
_set_expected_place(place)
# init nccl context
parallel_helper._set_parallel_ctx(core.NCCLParallelContext(strategy, place))
parallel_helper._init_parallel_ctx()
def get_rank():
"""
Returns the rank of current trainer.
Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` .
The default value is 0.
Returns:
(int) The rank of current trainer.
Examples:
.. code-block:: python
import paddle
import paddle.distributed as dist
# execute this command in terminal: export PADDLE_TRAINER_ID=0
print("The rank is %d" % dist.get_rank())
# The rank is 0
"""
return ParallelEnv().rank
def get_world_size():
"""
Returns the number of trainers (number of processes participating in current job).
Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` .
The default value is 1.
Returns:
(int) The number of trainers.
Examples:
.. code-block:: python
import paddle
import paddle.distributed as dist
# execute this command in terminal: export PADDLE_TRAINERS_NUM=4
print("The world_size is %d" % dist.get_world_size())
# The world_size is 4
"""
return ParallelEnv().world_size