You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/distribution.py

972 lines
34 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define the distribution functions
# __all__ = ['Categorical',
# 'MultivariateNormalDiag',
# 'Normal',
# 'sampling_id',
# 'Uniform']
from __future__ import print_function
from .fluid.layers import control_flow
from .fluid.layers import tensor
from .fluid.layers import ops
from .fluid.layers import nn
from .fluid.layers import elementwise_mul, elementwise_div, elementwise_add, elementwise_sub
from .fluid import core
from .fluid.framework import in_dygraph_mode
from .tensor import arange, gather_nd, concat, multinomial
import math
import numpy as np
import warnings
from .fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
__all__ = ['Distribution', 'Uniform', 'Normal', 'Categorical']
class Distribution(object):
"""
The abstract base class for probability distributions. Functions are
implemented in specific distributions.
"""
def __init__(self):
super(Distribution, self).__init__()
def sample(self):
"""Sampling from the distribution."""
raise NotImplementedError
def entropy(self):
"""The entropy of the distribution."""
raise NotImplementedError
def kl_divergence(self, other):
"""The KL-divergence between self distributions and other."""
raise NotImplementedError
def log_prob(self, value):
"""Log probability density/mass function."""
raise NotImplementedError
def probs(self, value):
"""Probability density/mass function."""
raise NotImplementedError
def _validate_args(self, *args):
"""
Argument validation for distribution args
Args:
value (float, list, numpy.ndarray, Tensor)
Raises
ValueError: if one argument is Tensor, all arguments should be Tensor
"""
is_variable = False
is_number = False
for arg in args:
if isinstance(arg, tensor.Variable):
is_variable = True
else:
is_number = True
if is_variable and is_number:
raise ValueError(
'if one argument is Tensor, all arguments should be Tensor')
return is_variable
def _to_tensor(self, *args):
"""
Argument convert args to Tensor
Args:
value (float, list, numpy.ndarray, Tensor)
Returns:
Tensor of args.
"""
numpy_args = []
variable_args = []
tmp = 0.
for arg in args:
if isinstance(arg, float):
arg = [arg]
if not isinstance(arg, (list, np.ndarray, tensor.Variable)):
raise TypeError(
"Type of input args must be float, list, numpy.ndarray or Tensor, but received type {}".
format(type(arg)))
arg_np = np.array(arg)
arg_dtype = arg_np.dtype
if str(arg_dtype) != 'float32':
if str(arg_dtype) != 'float64':
# "assign" op doesn't support float64. if dtype is float64, float32 variable will be generated
# and converted to float64 later using "cast".
warnings.warn(
"data type of argument only support float32 and float64, your argument will be convert to float32."
)
arg_np = arg_np.astype('float32')
# tmp is used to support broadcast, it summarizes shapes of all the args and get the mixed shape.
tmp = tmp + arg_np
numpy_args.append(arg_np)
dtype = tmp.dtype
for arg in numpy_args:
arg_broadcasted, _ = np.broadcast_arrays(arg, tmp)
arg_variable = tensor.create_tensor(dtype=dtype)
tensor.assign(arg_broadcasted, arg_variable)
variable_args.append(arg_variable)
return tuple(variable_args)
def _check_values_dtype_in_probs(self, param, value):
"""
Log_prob and probs methods have input ``value``, if value's dtype is different from param,
convert value's dtype to be consistent with param's dtype.
Args:
param (Tensor): low and high in Uniform class, loc and scale in Normal class.
value (Tensor): The input tensor.
Returns:
value (Tensor): Change value's dtype if value's dtype is different from param.
"""
if in_dygraph_mode():
if value.dtype != param.dtype and convert_dtype(
value.dtype) in ['float32', 'float64']:
warnings.warn(
"dtype of input 'value' needs to be the same as parameters of distribution class. dtype of 'value' will be converted."
)
return core.ops.cast(value, 'in_dtype', value.dtype,
'out_dtype', param.dtype)
return value
check_variable_and_dtype(value, 'value', ['float32', 'float64'],
'log_prob')
if value.dtype != param.dtype:
warnings.warn(
"dtype of input 'value' needs to be the same as parameters of distribution class. dtype of 'value' will be converted."
)
return tensor.cast(value, dtype=param.dtype)
return value
class Uniform(Distribution):
"""Uniform distribution with `low` and `high` parameters.
Mathematical Details
The probability density function (pdf) is
.. math::
pdf(x; a, b) = \\frac{1}{Z}, \ a <=x <b
.. math::
Z = b - a
In the above equation:
* :math:`low = a`,
* :math:`high = b`,
* :math:`Z`: is the normalizing constant.
The parameters `low` and `high` must be shaped in a way that supports
[broadcasting](https://www.paddlepaddle.org.cn/documentation/docs/en/develop/beginners_guide/basic_concept/broadcasting_en.html) (e.g., `high - low` is a valid operation).
Args:
low(int|float|list|numpy.ndarray|Tensor): The lower boundary of uniform distribution.The data type is int, float, list, numpy.ndarray or Tensor
high(int|float|list|numpy.ndarray|Tensor): The higher boundary of uniform distribution.The data type is int, float, list, numpy.ndarray or Tensor
name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Examples:
.. code-block:: python
import numpy as np
import paddle
from paddle.distribution import Uniform
paddle.disable_static()
# Without broadcasting, a single uniform distribution [3, 4]:
u1 = Uniform(low=3.0, high=4.0)
# 2 distributions [1, 3], [2, 4]
u2 = Uniform(low=[1.0, 2.0], high=[3.0, 4.0])
# 4 distributions
u3 = Uniform(low=[[1.0, 2.0], [3.0, 4.0]],
high=[[1.5, 2.5], [3.5, 4.5]])
# With broadcasting:
u4 = Uniform(low=3.0, high=[5.0, 6.0, 7.0])
# Complete example
value_npdata = np.array([0.8], dtype="float32")
value_tensor = paddle.to_tensor(value_npdata)
uniform = Uniform([0.], [2.])
sample = uniform.sample([2])
# a random tensor created by uniform distribution with shape: [2, 1]
entropy = uniform.entropy()
# [0.6931472] with shape: [1]
lp = uniform.log_prob(value_tensor)
# [-0.6931472] with shape: [1]
p = uniform.probs(value_tensor)
# [0.5] with shape: [1]
"""
def __init__(self, low, high, name=None):
if not in_dygraph_mode():
check_type(low, 'low',
(int, float, np.ndarray, tensor.Variable, list),
'Uniform')
check_type(high, 'high',
(int, float, np.ndarray, tensor.Variable, list),
'Uniform')
self.all_arg_is_float = False
self.batch_size_unknown = False
self.name = name if name is not None else 'Uniform'
self.dtype = 'float32'
if isinstance(low, int):
low = float(low)
if isinstance(high, int):
high = float(high)
if self._validate_args(low, high):
self.batch_size_unknown = True
self.low = low
self.high = high
self.dtype = convert_dtype(low.dtype)
else:
if isinstance(low, float) and isinstance(high, float):
self.all_arg_is_float = True
if isinstance(
low,
np.ndarray) and str(low.dtype) in ['float32', 'float64']:
self.dtype = low.dtype
elif isinstance(
high,
np.ndarray) and str(high.dtype) in ['float32', 'float64']:
self.dtype = high.dtype
self.low, self.high = self._to_tensor(low, high)
if self.dtype != convert_dtype(self.low.dtype):
self.low = tensor.cast(self.low, dtype=self.dtype)
self.high = tensor.cast(self.high, dtype=self.dtype)
def sample(self, shape, seed=0):
"""Generate samples of the specified shape.
Args:
shape (list): 1D `int32`. Shape of the generated samples.
seed (int): Python integer number.
Returns:
Tensor: A tensor with prepended dimensions shape.The data type is float32.
"""
if not in_dygraph_mode():
check_type(shape, 'shape', (list), 'sample')
check_type(seed, 'seed', (int), 'sample')
name = self.name + '_sample'
batch_shape = list((self.low + self.high).shape)
if self.batch_size_unknown:
output_shape = shape + batch_shape
zero_tmp = tensor.fill_constant_batch_size_like(
self.low + self.high, batch_shape + shape, self.dtype, 0.)
uniform_random_tmp = nn.uniform_random_batch_size_like(
zero_tmp,
zero_tmp.shape,
dtype=self.dtype,
min=0.,
max=1.,
seed=seed)
zero_tmp_reshape = nn.reshape(zero_tmp, output_shape)
uniform_random_tmp_reshape = nn.reshape(uniform_random_tmp,
output_shape)
output = uniform_random_tmp_reshape * (
zero_tmp_reshape + self.high - self.low)
output = elementwise_add(output, self.low, name=name)
return output
else:
output_shape = shape + batch_shape
output = nn.uniform_random(
output_shape, seed=seed, dtype=self.dtype) * (tensor.zeros(
output_shape, dtype=self.dtype) + (self.high - self.low))
output = elementwise_add(output, self.low, name=name)
if self.all_arg_is_float:
return nn.reshape(output, shape, name=name)
else:
return output
def log_prob(self, value):
"""Log probability density/mass function.
Args:
value (Tensor): The input tensor.
Returns:
Tensor: log probability.The data type is same with value.
"""
name = self.name + '_log_prob'
value = self._check_values_dtype_in_probs(self.low, value)
if in_dygraph_mode():
# ensure value in [low, high]
lb_bool = self.low < value
ub_bool = value < self.high
lb = core.ops.cast(lb_bool, 'in_dtype', lb_bool.dtype, 'out_dtype',
value.dtype)
ub = core.ops.cast(ub_bool, 'in_dtype', ub_bool.dtype, 'out_dtype',
value.dtype)
return nn.log(lb * ub) - nn.log(self.high - self.low)
lb_bool = self.low < value
ub_bool = value < self.high
lb = tensor.cast(lb_bool, dtype=value.dtype)
ub = tensor.cast(ub_bool, dtype=value.dtype)
return elementwise_sub(
nn.log(lb * ub), nn.log(self.high - self.low), name=name)
def probs(self, value):
"""Probability density/mass function.
Args:
value (Tensor): The input tensor.
Returns:
Tensor: probability.The data type is same with value.
"""
name = self.name + '_probs'
value = self._check_values_dtype_in_probs(self.low, value)
if in_dygraph_mode():
lb_bool = self.low < value
ub_bool = value < self.high
lb = core.ops.cast(lb_bool, 'in_dtype', lb_bool.dtype, 'out_dtype',
value.dtype)
ub = core.ops.cast(ub_bool, 'in_dtype', ub_bool.dtype, 'out_dtype',
value.dtype)
return (lb * ub) / (self.high - self.low)
lb_bool = self.low < value
ub_bool = value < self.high
lb = tensor.cast(lb_bool, dtype=value.dtype)
ub = tensor.cast(ub_bool, dtype=value.dtype)
return elementwise_div((lb * ub), (self.high - self.low), name=name)
def entropy(self):
"""Shannon entropy in nats.
The entropy is
.. math::
entropy(low, high) = \\log (high - low)
Returns:
Tensor: Shannon entropy of uniform distribution.The data type is float32.
"""
name = self.name + '_entropy'
return nn.log(self.high - self.low, name=name)
class Normal(Distribution):
"""The Normal distribution with location `loc` and `scale` parameters.
Mathematical details
The probability density function (pdf) is
.. math::
pdf(x; \mu, \sigma) = \\frac{1}{Z}e^{\\frac {-0.5 (x - \mu)^2} {\sigma^2} }
.. math::
Z = (2 \pi \sigma^2)^{0.5}
In the above equation:
* :math:`loc = \mu`: is the mean.
* :math:`scale = \sigma`: is the std.
* :math:`Z`: is the normalization constant.
Args:
loc(int|float|list|numpy.ndarray|Tensor): The mean of normal distribution.The data type is int, float, list, numpy.ndarray or Tensor.
scale(int|float|list|numpy.ndarray|Tensor): The std of normal distribution.The data type is int, float, list, numpy.ndarray or Tensor.
name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Examples:
.. code-block:: python
import numpy as np
import paddle
from paddle.distribution import Normal
paddle.disable_static()
# Define a single scalar Normal distribution.
dist = Normal(loc=0., scale=3.)
# Define a batch of two scalar valued Normals.
# The first has mean 1 and standard deviation 11, the second 2 and 22.
dist = Normal(loc=[1., 2.], scale=[11., 22.])
# Get 3 samples, returning a 3 x 2 tensor.
dist.sample([3])
# Define a batch of two scalar valued Normals.
# Both have mean 1, but different standard deviations.
dist = Normal(loc=1., scale=[11., 22.])
# Complete example
value_npdata = np.array([0.8], dtype="float32")
value_tensor = paddle.to_tensor(value_npdata)
normal_a = Normal([0.], [1.])
normal_b = Normal([0.5], [2.])
sample = normal_a.sample([2])
# a random tensor created by normal distribution with shape: [2, 1]
entropy = normal_a.entropy()
# [1.4189385] with shape: [1]
lp = normal_a.log_prob(value_tensor)
# [-1.2389386] with shape: [1]
p = normal_a.probs(value_tensor)
# [0.28969154] with shape: [1]
kl = normal_a.kl_divergence(normal_b)
# [0.34939718] with shape: [1]
"""
def __init__(self, loc, scale, name=None):
if not in_dygraph_mode():
check_type(loc, 'loc',
(int, float, np.ndarray, tensor.Variable, list),
'Normal')
check_type(scale, 'scale',
(int, float, np.ndarray, tensor.Variable, list),
'Normal')
self.batch_size_unknown = False
self.all_arg_is_float = False
self.name = name if name is not None else 'Normal'
self.dtype = 'float32'
if isinstance(loc, int):
loc = float(loc)
if isinstance(scale, int):
scale = float(scale)
if self._validate_args(loc, scale):
self.batch_size_unknown = True
self.loc = loc
self.scale = scale
self.dtype = convert_dtype(loc.dtype)
else:
if isinstance(loc, float) and isinstance(scale, float):
self.all_arg_is_float = True
if isinstance(
loc,
np.ndarray) and str(loc.dtype) in ['float32', 'float64']:
self.dtype = loc.dtype
elif isinstance(
scale,
np.ndarray) and str(scale.dtype) in ['float32', 'float64']:
self.dtype = scale.dtype
self.loc, self.scale = self._to_tensor(loc, scale)
if self.dtype != convert_dtype(self.loc.dtype):
self.loc = tensor.cast(self.loc, dtype=self.dtype)
self.scale = tensor.cast(self.scale, dtype=self.dtype)
def sample(self, shape, seed=0):
"""Generate samples of the specified shape.
Args:
shape (list): 1D `int32`. Shape of the generated samples.
seed (int): Python integer number.
Returns:
Tensor: A tensor with prepended dimensions shape.The data type is float32.
"""
if not in_dygraph_mode():
check_type(shape, 'shape', (list), 'sample')
check_type(seed, 'seed', (int), 'sample')
batch_shape = list((self.loc + self.scale).shape)
name = self.name + '_sample'
if self.batch_size_unknown:
output_shape = shape + batch_shape
zero_tmp = tensor.fill_constant_batch_size_like(
self.loc + self.scale, batch_shape + shape, self.dtype, 0.)
zero_tmp_reshape = nn.reshape(zero_tmp, output_shape)
zero_tmp_shape = nn.shape(zero_tmp_reshape)
normal_random_tmp = nn.gaussian_random(
zero_tmp_shape, mean=0., std=1., seed=seed, dtype=self.dtype)
output = normal_random_tmp * (zero_tmp_reshape + self.scale)
output = elementwise_add(output, self.loc, name=name)
return output
else:
output_shape = shape + batch_shape
output = nn.gaussian_random(output_shape, mean=0., std=1., seed=seed, dtype=self.dtype) * \
(tensor.zeros(output_shape, dtype=self.dtype) + self.scale)
output = elementwise_add(output, self.loc, name=name)
if self.all_arg_is_float:
return nn.reshape(output, shape, name=name)
else:
return output
def entropy(self):
"""Shannon entropy in nats.
The entropy is
.. math::
entropy(\sigma) = 0.5 \\log (2 \pi e \sigma^2)
In the above equation:
* :math:`scale = \sigma`: is the std.
Returns:
Tensor: Shannon entropy of normal distribution.The data type is float32.
"""
name = self.name + '_entropy'
batch_shape = list((self.loc + self.scale).shape)
zero_tmp = tensor.fill_constant_batch_size_like(
self.loc + self.scale, batch_shape, self.dtype, 0.)
return elementwise_add(
0.5 + zero_tmp,
0.5 * math.log(2 * math.pi) + nn.log((self.scale + zero_tmp)),
name=name)
def log_prob(self, value):
"""Log probability density/mass function.
Args:
value (Tensor): The input tensor.
Returns:
Tensor: log probability.The data type is same with value.
"""
name = self.name + '_log_prob'
value = self._check_values_dtype_in_probs(self.loc, value)
var = self.scale * self.scale
log_scale = nn.log(self.scale)
return elementwise_sub(
-1. * ((value - self.loc) * (value - self.loc)) / (2. * var),
log_scale + math.log(math.sqrt(2. * math.pi)),
name=name)
def probs(self, value):
"""Probability density/mass function.
Args:
value (Tensor): The input tensor.
Returns:
Tensor: probability.The data type is same with value.
"""
name = self.name + '_probs'
value = self._check_values_dtype_in_probs(self.loc, value)
var = self.scale * self.scale
return elementwise_div(
ops.exp(-1. * ((value - self.loc) * (value - self.loc)) /
(2. * var)), (math.sqrt(2 * math.pi) * self.scale),
name=name)
def kl_divergence(self, other):
"""The KL-divergence between two normal distributions.
The probability density function (pdf) is
.. math::
KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\\frac{diff}{\sigma_1})^2 - 1 - 2 \\ln {ratio})
.. math::
ratio = \\frac{\sigma_0}{\sigma_1}
.. math::
diff = \mu_1 - \mu_0
In the above equation:
* :math:`loc = \mu_0`: is the mean of current Normal distribution.
* :math:`scale = \sigma_0`: is the std of current Normal distribution.
* :math:`loc = \mu_1`: is the mean of other Normal distribution.
* :math:`scale = \sigma_1`: is the std of other Normal distribution.
* :math:`ratio`: is the ratio of scales.
* :math:`diff`: is the difference between means.
Args:
other (Normal): instance of Normal.
Returns:
Tensor: kl-divergence between two normal distributions.The data type is float32.
"""
if not in_dygraph_mode():
check_type(other, 'other', Normal, 'kl_divergence')
name = self.name + '_kl_divergence'
var_ratio = self.scale / other.scale
var_ratio = (var_ratio * var_ratio)
t1 = (self.loc - other.loc) / other.scale
t1 = (t1 * t1)
return elementwise_add(
0.5 * var_ratio, 0.5 * (t1 - 1. - nn.log(var_ratio)), name=name)
class Categorical(Distribution):
"""
Categorical distribution is a discrete probability distribution that
describes the possible results of a random variable that can take on
one of K possible categories, with the probability of each category
separately specified.
The probability mass function (pmf) is:
.. math::
pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}
In the above equation:
* :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise.
Args:
logits(list|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64.
name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Categorical
paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x.numpy())
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]
paddle.seed(200) # on CPU device
y = paddle.rand([6])
print(y.numpy())
# [0.77663314 0.90824795 0.15685187
# 0.04279523 0.34468332 0.7955718 ]
cat = Categorical(x)
cat2 = Categorical(y)
paddle.seed(1000) # on CPU device
cat.sample([2,3])
# [[0, 0, 5],
# [3, 4, 5]]
cat.entropy()
# [1.77528]
cat.kl_divergence(cat2)
# [0.071952]
value = paddle.to_tensor([2,1,3])
cat.probs(value)
# [0.00608027 0.108298 0.269656]
cat.log_prob(value)
# [-5.10271 -2.22287 -1.31061]
"""
def __init__(self, logits, name=None):
"""
Args:
logits(list|numpy.ndarray|Tensor): The logits input of categorical distribution. The data type is float32 or float64.
name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
"""
if not in_dygraph_mode():
check_type(logits, 'logits', (np.ndarray, tensor.Variable, list),
'Categorical')
self.name = name if name is not None else 'Categorical'
self.dtype = 'float32'
if self._validate_args(logits):
self.logits = logits
self.dtype = convert_dtype(logits.dtype)
else:
if isinstance(logits, np.ndarray) and str(
logits.dtype) in ['float32', 'float64']:
self.dtype = logits.dtype
self.logits = self._to_tensor(logits)[0]
if self.dtype != convert_dtype(self.logits.dtype):
self.logits = tensor.cast(self.logits, dtype=self.dtype)
def sample(self, shape):
"""Generate samples of the specified shape.
Args:
shape (list): Shape of the generated samples.
Returns:
Tensor: A tensor with prepended dimensions shape.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Categorical
paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x.numpy())
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]
cat = Categorical(x)
paddle.seed(1000) # on CPU device
cat.sample([2,3])
# [[0, 0, 5],
# [3, 4, 5]]
"""
name = self.name + '_sample'
if not in_dygraph_mode():
check_type(shape, 'shape', (list), 'sample')
num_samples = np.prod(np.array(shape))
logits_shape = list(self.logits.shape)
if len(logits_shape) > 1:
sample_shape = shape + logits_shape[:-1]
logits = nn.reshape(self.logits,
[np.prod(logits_shape[:-1]), logits_shape[-1]])
else:
sample_shape = shape
logits = self.logits
sample_index = multinomial(logits, num_samples, True)
return nn.reshape(sample_index, sample_shape, name=name)
def kl_divergence(self, other):
"""The KL-divergence between two Categorical distributions.
Args:
other (Categorical): instance of Categorical. The data type is float32.
Returns:
Tensor: kl-divergence between two Categorical distributions.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Categorical
paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x.numpy())
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]
paddle.seed(200) # on CPU device
y = paddle.rand([6])
print(y.numpy())
# [0.77663314 0.90824795 0.15685187
# 0.04279523 0.34468332 0.7955718 ]
cat = Categorical(x)
cat2 = Categorical(y)
cat.kl_divergence(cat2)
# [0.071952]
"""
name = self.name + '_kl_divergence'
if not in_dygraph_mode():
check_type(other, 'other', Categorical, 'kl_divergence')
logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
other_logits = other.logits - nn.reduce_max(
other.logits, dim=-1, keep_dim=True)
e_logits = ops.exp(logits)
other_e_logits = ops.exp(other_logits)
z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True)
prob = e_logits / z
kl = nn.reduce_sum(
prob * (logits - nn.log(z) - other_logits + nn.log(other_z)),
dim=-1,
keep_dim=True,
name=name)
return kl
def entropy(self):
"""Shannon entropy in nats.
Returns:
Tensor: Shannon entropy of Categorical distribution. The data type is float32.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Categorical
paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x.numpy())
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]
cat = Categorical(x)
cat.entropy()
# [1.77528]
"""
name = self.name + '_entropy'
logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
e_logits = ops.exp(logits)
z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
prob = e_logits / z
neg_entropy = nn.reduce_sum(
prob * (logits - nn.log(z)), dim=-1, keep_dim=True)
entropy = nn.scale(neg_entropy, scale=-1.0, name=name)
return entropy
def probs(self, value):
"""Probabilities of the given category (``value``).
If ``logits`` is 2-D or higher dimension, the last dimension will be regarded as
category, and the others represents the different distributions.
At the same time, if ``vlaue`` is 1-D Tensor, ``value`` will be broadcast to the
same number of distributions as ``logits``.
If ``value`` is not 1-D Tensor, ``value`` should have the same number distributions
with ``logits. That is, ``value[:-1] = logits[:-1]``.
Args:
value (Tensor): The input tensor represents the selected category index.
Returns:
Tensor: probability according to the category index.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Categorical
paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x.numpy())
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]
cat = Categorical(x)
value = paddle.to_tensor([2,1,3])
cat.probs(value)
# [0.00608027 0.108298 0.269656]
"""
name = self.name + '_probs'
dist_sum = nn.reduce_sum(self.logits, dim=-1, keep_dim=True)
prob = self.logits / dist_sum
shape = list(prob.shape)
value_shape = list(value.shape)
if len(shape) == 1:
num_value_in_one_dist = np.prod(value_shape)
index_value = nn.reshape(value, [num_value_in_one_dist, 1])
index = index_value
else:
num_dist = np.prod(shape[:-1])
num_value_in_one_dist = value_shape[-1]
prob = nn.reshape(prob, [num_dist, shape[-1]])
if len(value_shape) == 1:
value = nn.expand(value, [num_dist])
value_shape = shape[:-1] + value_shape
index_value = nn.reshape(value, [num_dist, -1, 1])
if shape[:-1] != value_shape[:-1]:
raise ValueError(
"shape of value {} must match shape of logits {}".format(
str(value_shape[:-1]), str(shape[:-1])))
index_prefix = nn.unsqueeze(
arange(
num_dist, dtype=index_value.dtype), axes=-1)
index_prefix = nn.expand(index_prefix, [1, num_value_in_one_dist])
index_prefix = nn.unsqueeze(index_prefix, axes=-1)
if index_value.dtype != index_prefix.dtype:
tensor.cast(index_prefix, dtype=index_value.dtype)
index = concat([index_prefix, index_value], axis=-1)
# value is the category index to search for the corresponding probability.
select_prob = gather_nd(prob, index)
return nn.reshape(select_prob, value_shape, name=name)
def log_prob(self, value):
"""Log probabilities of the given category. Refer to ``probs`` method.
Args:
value (Tensor): The input tensor represents the selected category index.
Returns:
Tensor: Log probability.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Categorical
paddle.seed(100) # on CPU device
x = paddle.rand([6])
print(x.numpy())
# [0.5535528 0.20714243 0.01162981
# 0.51577556 0.36369765 0.2609165 ]
cat = Categorical(x)
value = paddle.to_tensor([2,1,3])
cat.log_prob(value)
# [-5.10271 -2.22287 -1.31061]
"""
name = self.name + '_log_prob'
return nn.log(self.probs(value), name=name)