You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/initializer.py

1039 lines
35 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from . import framework
from . import core
from .framework import in_dygraph_mode, default_main_program
import numpy as np
from .core import VarDesc
from . import unique_name
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
__all__ = [
'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
]
_global_weight_initializer_ = None
_global_bias_initializer_ = None
class Initializer(object):
"""Base class for variable initializers
Defines the common interface of variable initializers.
They add operations to the init program that are used
to initialize variables. Users should not use this class
directly, but need to use one of its implementations.
"""
def __init__(self):
pass
def __call__(self, param, block=None):
"""Add corresponding initialization operations to the network
"""
raise NotImplementedError()
def _check_block(self, block):
if block is None:
if in_dygraph_mode():
block = default_main_program().global_block()
else:
raise ValueError(
"The parameter 'block' is needed in static graph mode.")
return block
def _compute_fans(self, var):
"""Compute the fan_in and the fan_out for layers
This method computes the fan_in and the fan_out
for neural network layers, if not specified. It is
not possible to perfectly estimate fan_in and fan_out.
This method will estimate it correctly for matrix multiply and
convolutions.
Args:
var: variable for which fan_in and fan_out have to be computed
Returns:
tuple of two integers (fan_in, fan_out)
"""
shape = var.shape
if not shape or len(shape) == 0:
fan_in = fan_out = 1
elif len(shape) == 1:
fan_in = fan_out = shape[0]
elif len(shape) == 2:
# This is the case for simple matrix multiply
fan_in = shape[0]
fan_out = shape[1]
else:
# Assume this to be a convolutional kernel
# In PaddlePaddle, the shape of the kernel is like:
# [num_filters, num_filter_channels, ...] where the remaining
# dimensions are the filter_size
receptive_field_size = np.prod(shape[2:])
fan_in = shape[1] * receptive_field_size
fan_out = shape[0] * receptive_field_size
return (fan_in, fan_out)
class ConstantInitializer(Initializer):
"""Implements the constant initializer
Args:
value (float32): constant value to initialize the variable
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
paddle.enable_static()
x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
fc = fluid.layers.fc(
input=x,
size=10,
param_attr=fluid.initializer.Constant(value=2.0))
"""
def __init__(self, value=0.0, force_cpu=False):
assert value is not None
super(ConstantInitializer, self).__init__()
self._value = value
self._force_cpu = force_cpu
def __call__(self, var, block=None):
"""Initialize the input tensor with constant.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
The initialization op
"""
block = self._check_block(block)
assert isinstance(var, framework.Variable)
assert isinstance(block, framework.Block)
# to be compatible of fp16 initializers
if var.dtype == VarDesc.VarType.FP16:
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(".".join(
['constant_init', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
# Initialization Ops should be prepended and not appended
op = block._prepend_op(
type="fill_constant",
outputs={"Out": out_var},
attrs={
"shape": var.shape,
"dtype": int(out_dtype),
"value": float(self._value),
'force_cpu': self._force_cpu
},
stop_gradient=True)
if var.dtype == VarDesc.VarType.FP16:
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not framework.in_dygraph_mode():
var.op = op
return op
class UniformInitializer(Initializer):
"""Implements the random uniform distribution initializer
Args:
low (float): lower boundary of the uniform distribution
high (float): upper boundary of the uniform distribution
seed (int): random seed
diag_num (int): the number of diagonal elements to initialize.
If set to 0, diagonal initialization will be not performed.
diag_step (int): Step size between two diagonal elements,
which is generally the width of the square matrix.
diag_val (float): the value of the diagonal element to be initialized,
default 1.0. It takes effect only if the diag_num is greater than 0.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 1], dtype='float32')
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
"""
def __init__(self,
low=-1.0,
high=1.0,
seed=0,
diag_num=0,
diag_step=0,
diag_val=1.0):
assert low is not None
assert high is not None
assert high >= low
assert seed is not None
assert diag_num is not None
assert diag_step is not None
assert diag_val is not None
if diag_num > 0 or diag_step > 0:
assert (diag_num > 0 and diag_step > 0)
super(UniformInitializer, self).__init__()
self._low = low
self._high = high
self._seed = seed
self._diag_num = diag_num
self._diag_step = diag_step
self._diag_val = diag_val
def __call__(self, var, block=None):
"""Initialize the input tensor with Uniform distribution.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
The initialization op
"""
block = self._check_block(block)
assert isinstance(block, framework.Block)
check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
"uniform_random")
# Initialization Ops should be prepended and not appended
if self._seed == 0:
self._seed = block.program.random_seed
# to be compatible of fp16 initializers
if var.dtype == VarDesc.VarType.FP16:
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(".".join(
['uniform_random', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
op = block._prepend_op(
type="uniform_random",
inputs={},
outputs={"Out": out_var},
attrs={
"shape": var.shape,
"dtype": out_dtype,
"min": self._low,
"max": self._high,
"seed": self._seed,
"diag_num": self._diag_num,
"diag_step": self._diag_step,
"diag_val": self._diag_val
},
stop_gradient=True)
if var.dtype == VarDesc.VarType.FP16:
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not framework.in_dygraph_mode():
var.op = op
return op
class NormalInitializer(Initializer):
"""Implements the Random Normal(Gaussian) distribution initializer
Args:
loc (float): mean of the normal distribution
scale (float): standard deviation of the normal distribution
seed (int): random seed
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
"""
def __init__(self, loc=0.0, scale=1.0, seed=0):
assert loc is not None
assert scale is not None
assert seed is not None
super(NormalInitializer, self).__init__()
self._mean = loc
self._std_dev = scale
self._seed = seed
def __call__(self, var, block=None):
"""Initialize the input tensor with Normal distribution.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
The initialization op
"""
block = self._check_block(block)
assert isinstance(block, framework.Block)
check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
"guassian_random")
# Initialization Ops should be prepended and not appended
if self._seed == 0:
self._seed = block.program.random_seed
# to be compatible of fp16 initalizers
if var.dtype == VarDesc.VarType.FP16:
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(".".join(
['gaussian_random', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
op = block._prepend_op(
type="gaussian_random",
outputs={"Out": out_var},
attrs={
"shape": var.shape,
"dtype": out_dtype,
"mean": self._mean,
"std": self._std_dev,
"seed": self._seed,
"use_mkldnn": False
},
stop_gradient=True)
if var.dtype == VarDesc.VarType.FP16:
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not framework.in_dygraph_mode():
var.op = op
return op
class TruncatedNormalInitializer(Initializer):
"""Implements the Random TruncatedNormal(Gaussian) distribution initializer
Args:
loc (float): mean of the normal distribution
scale (float): standard deviation of the normal distribution
seed (int): random seed
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 1], dtype='float32')
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
"""
def __init__(self, loc=0.0, scale=1.0, seed=0):
assert loc is not None
assert scale is not None
assert seed is not None
super(TruncatedNormalInitializer, self).__init__()
self._mean = loc
self._std_dev = scale
self._seed = seed
def __call__(self, var, block=None):
"""Initialize the input tensor with TruncatedNormal distribution.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
The initialization op
"""
block = self._check_block(block)
assert isinstance(var, framework.Variable)
assert isinstance(block, framework.Block)
# Initialization Ops should be prepended and not appended
if self._seed == 0:
self._seed = block.program.random_seed
# to be compatible of fp16 initalizers
if var.dtype == VarDesc.VarType.FP16:
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(".".join(
['truncated_gaussian_random', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
op = block._prepend_op(
type="truncated_gaussian_random",
outputs={"Out": out_var},
attrs={
"shape": var.shape,
"dtype": out_dtype,
"mean": self._mean,
"std": self._std_dev,
"seed": self._seed
},
stop_gradient=True)
if var.dtype == VarDesc.VarType.FP16:
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not framework.in_dygraph_mode():
var.op = op
return op
class XavierInitializer(Initializer):
"""
This class implements the Xavier weight initializer from the paper
`Understanding the difficulty of training deep feedforward neural
networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
by Xavier Glorot and Yoshua Bengio.
This initializer is designed to keep the scale of the gradients
approximately same in all the layers. In case of Uniform distribution,
the range is [-x, x], where
.. math::
x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}
In case of Normal distribution, the mean is 0 and the standard deviation
is
.. math::
\sqrt{\\frac{2.0}{fan\_in + fan\_out}}
Args:
uniform (bool,default True): whether to use uniform ,if False use normal distribution
fan_in (float,default None): fan_in for Xavier initialization. If None, it is
inferred from the variable.
fan_out (float,default None): fan_out for Xavier initialization. If None, it is
inferred from the variable.
seed (int): random seed
Note:
It is recommended to set fan_in and fan_out to None for most cases.
Examples:
.. code-block:: python
import paddle.fluid as fluid
queries = fluid.data(name='x', shape=[None,1], dtype='float32')
fc = fluid.layers.fc(
input=queries, size=10,
param_attr=fluid.initializer.Xavier(uniform=False))
"""
def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
assert uniform is not None
assert seed is not None
super(XavierInitializer, self).__init__()
self._uniform = uniform
self._fan_in = fan_in
self._fan_out = fan_out
self._seed = seed
def __call__(self, var, block=None):
"""Initialize the input tensor with Xavier initialization.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
The initialization op
"""
block = self._check_block(block)
assert isinstance(block, framework.Block)
check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
"xavier_init")
f_in, f_out = self._compute_fans(var)
# If fan_in and fan_out are passed, use them
fan_in = f_in if self._fan_in is None else self._fan_in
fan_out = f_out if self._fan_out is None else self._fan_out
if self._seed == 0:
self._seed = block.program.random_seed
# to be compatible of fp16 initalizers
if var.dtype == VarDesc.VarType.FP16:
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(".".join(
['xavier_init', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
if self._uniform:
limit = np.sqrt(6.0 / float(fan_in + fan_out))
op = block._prepend_op(
type="uniform_random",
inputs={},
outputs={"Out": out_var},
attrs={
"shape": out_var.shape,
"dtype": out_dtype,
"min": -limit,
"max": limit,
"seed": self._seed
},
stop_gradient=True)
else:
std = np.sqrt(2.0 / float(fan_in + fan_out))
op = block._prepend_op(
type="gaussian_random",
outputs={"Out": out_var},
attrs={
"shape": out_var.shape,
"dtype": out_dtype,
"mean": 0.0,
"std": std,
"seed": self._seed
},
stop_gradient=True)
if var.dtype == VarDesc.VarType.FP16:
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not framework.in_dygraph_mode():
var.op = op
return op
class MSRAInitializer(Initializer):
"""Implements the MSRA initializer a.k.a. Kaiming Initializer
This class implements the weight initialization from the paper
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
robust initialization method that particularly considers the rectifier
nonlinearities. In case of Uniform distribution, the range is [-x, x], where
.. math::
x = \sqrt{\\frac{6.0}{fan\_in}}
In case of Normal distribution, the mean is 0 and the standard deviation
is
.. math::
\sqrt{\\frac{2.0}{fan\_in}}
Args:
uniform (bool): whether to use uniform or normal distribution
fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
inferred from the variable. default is None.
seed (int32): random seed
Note:
It is recommended to set fan_in to None for most cases.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
paddle.enable_static()
x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.MSRA(uniform=False))
"""
def __init__(self, uniform=True, fan_in=None, seed=0):
"""Constructor for MSRAInitializer
"""
assert uniform is not None
assert seed is not None
super(MSRAInitializer, self).__init__()
self._uniform = uniform
self._fan_in = fan_in
self._seed = seed
def __call__(self, var, block=None):
"""Initialize the input tensor with MSRA initialization.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
The initialization op
"""
block = self._check_block(block)
assert isinstance(var, framework.Variable)
assert isinstance(block, framework.Block)
f_in, f_out = self._compute_fans(var)
# If fan_in is passed, use it
fan_in = f_in if self._fan_in is None else self._fan_in
if self._seed == 0:
self._seed = block.program.random_seed
# to be compatible of fp16 initalizers
if var.dtype == VarDesc.VarType.FP16:
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(".".join(
['masra_init', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
if self._uniform:
limit = np.sqrt(6.0 / float(fan_in))
op = block._prepend_op(
type="uniform_random",
inputs={},
outputs={"Out": out_var},
attrs={
"shape": out_var.shape,
"dtype": int(out_dtype),
"min": -limit,
"max": limit,
"seed": self._seed
},
stop_gradient=True)
else:
std = np.sqrt(2.0 / float(fan_in))
op = block._prepend_op(
type="gaussian_random",
outputs={"Out": out_var},
attrs={
"shape": out_var.shape,
"dtype": int(out_dtype),
"mean": 0.0,
"std": std,
"seed": self._seed
},
stop_gradient=True)
if var.dtype == VarDesc.VarType.FP16:
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not framework.in_dygraph_mode():
var.op = op
return op
class BilinearInitializer(Initializer):
"""
This initializer can be used in transposed convolution operator to
act as upsampling. Users can upsample a feature map with shape of
(B, C, H, W) by any integer factor. The usage is:
Examples:
.. code-block:: python
import math
import paddle
import paddle.nn as nn
from paddle.regularizer import L2Decay
factor = 2
C = 2
B = 8
H = W = 32
w_attr = paddle.ParamAttr(learning_rate=0.,
regularizer=L2Decay(0.),
initializer=nn.initializer.Bilinear())
data = paddle.rand([B, 3, H, W], dtype='float32')
conv_up = nn.Conv2DTranspose(3,
out_channels=C,
kernel_size=2 * factor - factor % 2,
padding=int(
math.ceil((factor - 1) / 2.)),
stride=factor,
weight_attr=w_attr,
bias_attr=False)
x = conv_up(data)
Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
This initializer will set a (K, K) interpolation kernel for every channel
of the filter identically. The resulting shape of the output feature map
will be (B, C, factor * H, factor * W). Note that the learning rate and the
weight decay are set to 0 in order to keep coefficient values of bilinear
interpolation unchanged during training.
"""
def __init__(self):
"""Constructor for BilinearInitializer.
"""
super(BilinearInitializer, self).__init__()
def __call__(self, var, block=None):
"""Initialize the input tensor with Bilinear initialization.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
The initialization op
"""
block = self._check_block(block)
if not isinstance(var, framework.Variable):
raise ValueError("var must be framework.Variable.")
if not isinstance(block, framework.Block):
raise ValueError("block must be framework.Block.")
shape = var.shape
if len(shape) != 4:
raise ValueError("the length of shape must be 4.")
if shape[2] != shape[3]:
raise ValueError("shape[2] must be equal to shape[3].")
weight = np.zeros(np.prod(var.shape), dtype='float32')
size = shape[3]
# factor
f = np.ceil(size / 2.)
# center
c = (2 * f - 1 - f % 2) / (2. * f)
for i in range(np.prod(shape)):
x = i % size
y = (i / size) % size
weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
weight = np.reshape(weight, shape)
# to be compatible of fp16 initalizers
if var.dtype == VarDesc.VarType.FP16 or var.dtype == VarDesc.VarType.FP64:
out_dtype = VarDesc.VarType.FP32
out_var = block.create_var(
name=unique_name.generate(".".join(
['bilinear_init', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_dtype = var.dtype
out_var = var
if out_dtype == VarDesc.VarType.FP32:
value_name = "fp32_values"
values = [float(v) for v in weight.flat]
else:
raise TypeError("Unsupported dtype %s", var.dtype)
if np.prod(shape) > 1024 * 1024:
raise ValueError("The size of input is too big. ")
op = block.append_op(
type='assign_value',
outputs={'Out': [out_var]},
attrs={
'dtype': out_dtype,
'shape': list(shape),
value_name: values
})
if var.dtype == VarDesc.VarType.FP16 or var.dtype == VarDesc.VarType.FP64:
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not framework.in_dygraph_mode():
var.op = op
return op
class NumpyArrayInitializer(Initializer):
"""Init an parameter with an numpy array
This op initialize the variable by numpy array.
Args:
value (numpy): numpy array to initialize the variable
Returns:
A Tensor variable initialized by numpy.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy
x = fluid.data(name="x", shape=[2, 1], dtype='float32')
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
"""
def __init__(self, value):
import numpy
assert isinstance(value, numpy.ndarray)
super(NumpyArrayInitializer, self).__init__()
self._value = value
def __call__(self, var, block=None):
"""Initialize the input tensor with Numpy array.
Args:
var(Tensor): Tensor that needs to be initialized.
block(Block, optional): The block in which initialization ops
should be added. Used in static graph only, default None.
Returns:
The initialization op
"""
block = self._check_block(block)
assert isinstance(var, framework.Variable)
assert isinstance(block, framework.Block)
# to be compatible of fp16 initalizers
if var.dtype == VarDesc.VarType.FP16:
out_dtype = VarDesc.VarType.FP32
np_value = self._value.astype("float32")
out_var = block.create_var(
name=unique_name.generate(".".join(
['numpy_array_init', var.name, 'tmp'])),
shape=var.shape,
dtype=out_dtype,
type=VarDesc.VarType.LOD_TENSOR,
persistable=False)
else:
out_var = var
out_dtype = var.dtype
np_value = self._value
# Initialization Ops should be prepended and not appended
if out_dtype == VarDesc.VarType.FP32:
value_name = "fp32_values"
values = [float(v) for v in np_value.flat]
elif out_dtype == VarDesc.VarType.INT32:
value_name = "int32_values"
values = [int(v) for v in np_value.flat]
else:
raise ValueError("Unsupported dtype %s", self._value.dtype)
if self._value.size > 1024 * 1024 * 1024:
raise ValueError("The size of input is too big. Please consider "
"saving it to file and 'load_op' to load it")
op = block._prepend_op(
type='assign_value',
outputs={'Out': out_var},
attrs={
'dtype': out_dtype,
'shape': list(self._value.shape),
value_name: values
},
stop_gradient=True)
if var.dtype == VarDesc.VarType.FP16:
block.append_op(
type="cast",
inputs={"X": out_var},
outputs={"Out": var},
attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype})
if not framework.in_dygraph_mode():
var.op = op
return op
def set_global_initializer(weight_init, bias_init=None):
"""
This API is used to set up global model parameter initializer in framework.
After this API is invoked, the global initializer will takes effect in subsequent code.
The model parameters include ``weight`` and ``bias`` . In the framework, they correspond
to ``fluid.Parameter`` , which is inherited from ``fluid.Variable`` , and is a persistable Variable.
This API only takes effect for model parameters, not for variables created through apis such as
:ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
the global initializer setting here will not take effect because it has a lower priority.
If you want to cancel the global initializer in framework, please set global initializer to ``None`` .
Args:
weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters.
Default: None.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
fluid.set_global_initializer(fluid.initializer.Uniform(), fluid.initializer.Constant())
x = fluid.data(name="x", shape=[1, 3, 32, 32])
# The weight of conv1 is initialized by Uniform
# The bias of conv1 is initialized by Constant
conv1 = fluid.layers.conv2d(x, 5, 3)
# If set param_attr/bias_attr too, global initializer will not take effect
# The weight of conv2 is initialized by Xavier
# The bias of conv2 is initialized by Normal
conv2 = fluid.layers.conv2d(conv1, 5, 3,
param_attr=fluid.initializer.Xavier(),
bias_attr=fluid.initializer.Normal())
# Cancel the global initializer in framework, it will takes effect in subsequent code
fluid.set_global_initializer(None)
"""
check_type(weight_init, 'weight_init', (Initializer, type(None)),
'set_global_initializer')
global _global_weight_initializer_
_global_weight_initializer_ = weight_init
check_type(bias_init, 'bias_init', (Initializer, type(None)),
'set_global_initializer')
global _global_bias_initializer_
_global_bias_initializer_ = bias_init
def _global_weight_initializer():
"""
Return the global weight initializer, The user doesn't need to use it.
"""
return _global_weight_initializer_
def _global_bias_initializer():
"""
Return the global weight initializer, The user doesn't need to use it.
"""
return _global_bias_initializer_
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
# param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
TruncatedNormal = TruncatedNormalInitializer
Xavier = XavierInitializer
MSRA = MSRAInitializer
Bilinear = BilinearInitializer