You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
288 lines
9.8 KiB
288 lines
9.8 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import six
|
|
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid.proto.framework_pb2 as framework_pb2
|
|
|
|
|
|
def get_all_op_protos():
|
|
"""
|
|
Get all registered op proto from PaddlePaddle C++ end.
|
|
:return: A list of registered OpProto.
|
|
"""
|
|
protostrs = core.get_all_op_protos()
|
|
ret_values = []
|
|
for pbstr in protostrs:
|
|
op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
|
|
ret_values.append(op_proto)
|
|
return ret_values
|
|
|
|
|
|
def is_str(s):
|
|
return isinstance(s, six.string_types)
|
|
|
|
|
|
class OpDescCreationMethod(object):
|
|
"""
|
|
Convert the user's input(only keyword arguments are supported) to OpDesc
|
|
based on the OpProto.
|
|
|
|
:param op_proto: The OpProto object.
|
|
:type op_proto: op_proto_pb2.OpProto
|
|
"""
|
|
|
|
def __init__(self, op_proto):
|
|
if not isinstance(op_proto, framework_pb2.OpProto):
|
|
raise TypeError(
|
|
"Type of op_proto should be OpProto in PaddlePaddle.")
|
|
self.__op_proto__ = op_proto
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
"""
|
|
Convert user's input to OpDesc. Only keyword arguments are supported.
|
|
:return: The OpDesc based on user input.
|
|
:rtype: op_desc_pb2.OpDesc
|
|
"""
|
|
if len(args) != 0:
|
|
raise ValueError("Only keyword arguments are supported.")
|
|
op_desc = framework_pb2.OpDesc()
|
|
for input_parameter in self.__op_proto__.inputs:
|
|
input_arguments = kwargs.get(input_parameter.name, [])
|
|
if is_str(input_arguments):
|
|
input_arguments = [input_arguments]
|
|
|
|
if not input_parameter.duplicable and len(input_arguments) > 1:
|
|
raise ValueError(
|
|
"Input %s expects only one input, but %d are given." %
|
|
(input_parameter.name, len(input_arguments)))
|
|
|
|
ipt = op_desc.inputs.add()
|
|
ipt.parameter = input_parameter.name
|
|
ipt.arguments.extend(input_arguments)
|
|
|
|
for output_parameter in self.__op_proto__.outputs:
|
|
output_arguments = kwargs.get(output_parameter.name, [])
|
|
if is_str(output_arguments):
|
|
output_arguments = [output_arguments]
|
|
|
|
if not output_parameter.duplicable and len(output_arguments) > 1:
|
|
raise ValueError(
|
|
"Output %s expects only one output, but %d are given." %
|
|
(output_parameter.name, len(output_arguments)))
|
|
|
|
out = op_desc.outputs.add()
|
|
out.parameter = output_parameter.name
|
|
out.arguments.extend(output_arguments)
|
|
|
|
# Types
|
|
op_desc.type = self.__op_proto__.type
|
|
|
|
# Attrs
|
|
for attr in self.__op_proto__.attrs:
|
|
if attr.generated:
|
|
continue
|
|
user_defined_attr = kwargs.get(attr.name, None)
|
|
if user_defined_attr is not None:
|
|
new_attr = op_desc.attrs.add()
|
|
new_attr.name = attr.name
|
|
new_attr.type = attr.type
|
|
if isinstance(user_defined_attr, np.ndarray):
|
|
user_defined_attr = user_defined_attr.tolist()
|
|
if attr.type == framework_pb2.INT:
|
|
new_attr.i = user_defined_attr
|
|
elif attr.type == framework_pb2.FLOAT:
|
|
new_attr.f = user_defined_attr
|
|
elif attr.type == framework_pb2.LONG:
|
|
new_attr.l = user_defined_attr
|
|
elif attr.type == framework_pb2.STRING:
|
|
new_attr.s = user_defined_attr
|
|
elif attr.type == framework_pb2.BOOLEAN:
|
|
new_attr.b = user_defined_attr
|
|
elif attr.type == framework_pb2.INTS:
|
|
new_attr.ints.extend(user_defined_attr)
|
|
elif attr.type == framework_pb2.FLOATS:
|
|
new_attr.floats.extend(user_defined_attr)
|
|
elif attr.type == framework_pb2.STRINGS:
|
|
new_attr.strings.extend(user_defined_attr)
|
|
elif attr.type == framework_pb2.BOOLEANS:
|
|
new_attr.bools.extend(user_defined_attr)
|
|
elif attr.type == framework_pb2.LONGS:
|
|
new_attr.longs.extend(user_defined_attr)
|
|
else:
|
|
raise NotImplementedError(
|
|
"A not supported attribute type: %s." % (
|
|
str(attr.type)))
|
|
|
|
return op_desc
|
|
|
|
@staticmethod
|
|
def any_is_true(generator):
|
|
"""
|
|
Reduce a boolean array to a single boolean parameter. If any element in
|
|
the array is True, this function will return True, otherwise False.
|
|
"""
|
|
for flag in generator:
|
|
if flag:
|
|
return True
|
|
return False
|
|
|
|
|
|
class OpInfo(object):
|
|
def __init__(self, name, method, inputs, outputs, attrs):
|
|
self.name = name
|
|
self.method = method
|
|
self.inputs = inputs
|
|
self.outputs = outputs
|
|
self.attrs = attrs
|
|
|
|
|
|
def create_op_creation_method(op_proto):
|
|
"""
|
|
Generate op creation method for an OpProto.
|
|
"""
|
|
method = OpDescCreationMethod(op_proto)
|
|
|
|
def __impl__(*args, **kwargs):
|
|
opdesc = method(*args, **kwargs)
|
|
return core.Operator.create(opdesc.SerializeToString())
|
|
|
|
return OpInfo(
|
|
method=__impl__,
|
|
name=op_proto.type,
|
|
inputs=[(var.name, var.duplicable) for var in op_proto.inputs],
|
|
outputs=[(var.name, var.duplicable) for var in op_proto.outputs],
|
|
attrs=[attr.name for attr in op_proto.attrs])
|
|
|
|
|
|
class OperatorFactory(object):
|
|
def __init__(self):
|
|
self.op_methods = dict()
|
|
|
|
for op_proto in get_all_op_protos():
|
|
method = create_op_creation_method(op_proto)
|
|
self.op_methods[method.name] = method
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
if "type" in kwargs:
|
|
if len(args) != 0:
|
|
raise ValueError(
|
|
"Except the argument \"type\","
|
|
"all of the other arguments should be keyword arguments.")
|
|
t = kwargs.pop("type")
|
|
else:
|
|
if len(args) != 1:
|
|
raise ValueError(
|
|
"Except the argument \"type\","
|
|
"all of the other arguments should be keyword arguments.")
|
|
t = args[0]
|
|
|
|
return self.get_op_info(t).method(**kwargs)
|
|
|
|
def types(self):
|
|
return list(self.op_methods.keys())
|
|
|
|
def get_op_info(self, t):
|
|
if t not in self.op_methods:
|
|
raise ValueError("The operator: %s is not registered." % t)
|
|
return self.op_methods.get(t)
|
|
|
|
def get_op_input_names(self, type):
|
|
return [x[0] for x in self.get_op_info(type).inputs]
|
|
|
|
def get_op_inputs(self, type):
|
|
return self.get_op_info(type).inputs
|
|
|
|
def get_op_output_names(self, type):
|
|
return [x[0] for x in self.get_op_info(type).outputs]
|
|
|
|
def get_op_outputs(self, type):
|
|
return self.get_op_info(type).outputs
|
|
|
|
def get_op_attr_names(self, type):
|
|
return self.get_op_info(type).attrs
|
|
|
|
|
|
class __RecurrentOp__(object):
|
|
__proto__ = None
|
|
type = "recurrent"
|
|
|
|
def __init__(self):
|
|
# cache recurrent_op's proto
|
|
if self.__proto__ is None:
|
|
for op_proto in get_all_op_protos():
|
|
if op_proto.type == self.type:
|
|
self.__proto__ = op_proto
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
if self.type not in args and "type" not in kwargs:
|
|
kwargs["type"] = self.type
|
|
# create proto
|
|
create_method = OpDescCreationMethod(self.__proto__)
|
|
proto = create_method(*args, **kwargs)
|
|
# create rnnop
|
|
return core.RecurrentOp.create(proto.SerializeToString())
|
|
|
|
|
|
class __DynamicRecurrentOp__(object):
|
|
__proto__ = None
|
|
type = "dynamic_recurrent"
|
|
|
|
def __init__(self):
|
|
# cache recurrent_op's proto
|
|
if self.__proto__ is None:
|
|
for op_proto in get_all_op_protos():
|
|
if op_proto.type == self.type:
|
|
self.__proto__ = op_proto
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
if self.type not in args and "type" not in kwargs:
|
|
kwargs["type"] = self.type
|
|
# create proto
|
|
create_method = OpDescCreationMethod(self.__proto__)
|
|
proto = create_method(*args, **kwargs)
|
|
# create rnnop
|
|
return core.DynamicRecurrentOp.create(proto.SerializeToString())
|
|
|
|
|
|
class __CondOp__(object):
|
|
__proto__ = None
|
|
type = "cond"
|
|
|
|
def __init__(self):
|
|
# cache recurrent_op's proto
|
|
if self.__proto__ is None:
|
|
for op_proto in get_all_op_protos():
|
|
if op_proto.type == self.type:
|
|
self.__proto__ = op_proto
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
if self.type not in args and "type" not in kwargs:
|
|
kwargs["type"] = self.type
|
|
# create proto
|
|
create_method = OpDescCreationMethod(self.__proto__)
|
|
proto = create_method(*args, **kwargs)
|
|
# create condop
|
|
return core.CondOp.create(proto.SerializeToString())
|
|
|
|
|
|
Operator = OperatorFactory() # The default global factory
|
|
RecurrentOp = __RecurrentOp__()
|
|
DynamicRecurrentOp = __DynamicRecurrentOp__()
|
|
CondOp = __CondOp__()
|