You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/nn/layer/common.py

1138 lines
45 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define the common classes to build a neural network
import paddle
from ...fluid.dygraph import BilinearTensorProduct #DEFINE_ALIAS
from ...fluid.dygraph import Pool2D #DEFINE_ALIAS
from ...fluid.dygraph import Flatten #DEFINE_ALIAS
from ...fluid.dygraph import layers
from .. import functional as F
from ...fluid.framework import _dygraph_tracer
__all__ = [
'BilinearTensorProduct',
'Pool2D',
'Embedding',
'Linear',
'Upsample',
'Pad1D',
'Pad2D',
'Pad3D',
'CosineSimilarity',
'Dropout',
'Dropout2D',
'Dropout3D',
'Bilinear',
'AlphaDropout',
]
class Linear(layers.Layer):
"""
Fully-connected linear transformation layer. For each input :math:`X` ,
the equation is:
.. math::
Out = XW + b
where :math:`W` is the weight and :math:`b` is the bias.
Linear layer takes only one multi-dimensional tensor as input with the
shape :math:`[batch\_size, *, in\_features]` , where :math:`*` means any
number of additional dimensions. It multiplies input tensor with the weight
(a 2-D tensor of shape :math:`[in\_features, out\_features]` ) and produces
an output tensor of shape :math:`[batch\_size, *, out\_features]` .
If :math:`bias\_attr` is not False, the bias (a 1-D tensor of
shape :math:`[out\_features]` ) will be created and added to the output.
Parameters:
in_features (int): The number of input units.
out_features (int): The number of output units.
weight_attr (ParamAttr, optional): The attribute for the learnable
weight of this layer. The default value is None and the weight will be
initialized to zero. For detailed information, please refer to
paddle.ParamAttr.
bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
of this layer. If it is set to False, no bias will be added to the output.
If it is set to None or one kind of ParamAttr, a bias parameter will
be created according to ParamAttr. For detailed information, please refer
to paddle.ParamAttr. The default value is None and the bias will be
initialized to zero.
name (str, optional): Normally there is no need for user to set this parameter.
For detailed information, please refer to :ref:`api_guide_Name` .
Attribute:
**weight** (Parameter): the learnable weight of this layer.
**bias** (Parameter): the learnable bias of this layer.
Shape:
- input: Multi-dimentional tensor with shape :math:`[batch\_size, *, in\_features]` .
- output: Multi-dimentional tensor with shape :math:`[batch\_size, *, out\_features]` .
Examples:
.. code-block:: python
import paddle
# Define the linear layer.
weight_attr = paddle.ParamAttr(
name="weight",
initializer=paddle.nn.initializer.Constant(value=0.5))
bias_attr = paddle.ParamAttr(
name="bias",
initializer=paddle.nn.initializer.Constant(value=1.0))
linear = paddle.nn.Linear(2, 4, weight_attr=weight_attr, bias_attr=bias_attr)
# linear.weight: [[0.5 0.5 0.5 0.5]
# [0.5 0.5 0.5 0.5]]
# linear.bias: [1. 1. 1. 1.]
x = paddle.randn((3, 2), dtype="float32")
# x: [[-0.32342386 -1.200079 ]
# [ 0.7979031 -0.90978354]
# [ 0.40597573 1.8095392 ]]
y = linear(x)
# y: [[0.23824859 0.23824859 0.23824859 0.23824859]
# [0.9440598 0.9440598 0.9440598 0.9440598 ]
# [2.1077576 2.1077576 2.1077576 2.1077576 ]]
"""
def __init__(self,
in_features,
out_features,
weight_attr=None,
bias_attr=None,
name=None):
super(Linear, self).__init__()
self._dtype = self._helper.get_default_dtype()
self._weight_attr = weight_attr
self._bias_attr = bias_attr
self.name = name
self.weight = self.create_parameter(
shape=[in_features, out_features],
attr=self._weight_attr,
dtype=self._dtype,
is_bias=False)
self.bias = self.create_parameter(
shape=[out_features],
attr=self._bias_attr,
dtype=self._dtype,
is_bias=True)
self.name = name
def forward(self, input):
out = F.linear(
x=input, weight=self.weight, bias=self.bias, name=self.name)
return out
class Upsample(layers.Layer):
"""
This op resizes a batch of images.
The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
(num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
Where in_w is width of the input tensor, in_h is the height of the input tensor,
in_d is the depth of the intput tensor.
and the resizing only applies on the three dimensions(depth, height and width).
Supporting resample methods:
'linear' : Linear interpolation
'bilinear' : Bilinear interpolation
'trilinear' : Trilinear interpolation
'nearest' : Nearest neighbor interpolation
'bicubic' : Bicubic interpolation
Linear interpolation is the method of using a line connecting two known quantities
to determine the value of an unknown quantity between the two known quantities.
Nearest neighbor interpolation is to perform nearest neighbor interpolation
in both the 3rd dimension(in height direction) and the 4th dimension(in width
direction) on input tensor.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this op) on a rectilinear 2D grid. The key idea is
to perform linear interpolation first in one direction, and then
again in the other direction.
Bicubic interpolation is an extension of cubic interpolation for interpolating
data points on a two-dimensional regular grid. The interpolated surface is
smoother than corresponding surfaces obtained by bilinear interpolation or
nearest-neighbor interpolation.
Trilinear interpolation is an extension of linear interpolation for
interpolating functions of three variables (e.g. D-direction,
H-direction and W-direction in this op) on a rectilinear 3D grid.
The linear interpolation is performed on three directions.
align_corners and align_mode are optional parameters,the calculation method
of interpolation can be selected by them.
Area interpolation is to perform area interpolation
in both the 3rd dimension(in height direction) , the 4th dimension(in width
direction) and the 5th dimension(in depth direction) on input tensor. Set to
area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
`paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.
Example:
.. code-block:: text
For scale_factor:
if align_corners = True && out_size > 1 :
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
scale_factor = float(in_size/out_size)
Linear interpolation:
if:
align_corners = False , align_mode = 0
input : (N,C,W_in)
output: (N,C,W_out) where:
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,W_in)
output: (N,C,W_out) where:
W_out = W_{in} * scale_{factor}
Nearest neighbor interpolation:
if:
align_corners = False
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = floor (H_{in} * scale_{factor})
W_out = floor (W_{in} * scale_{factor})
else:
align_corners = True
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = round(H_{in} * scale_{factor})
W_out = round(W_{in} * scale_{factor})
Bilinear interpolation:
if:
align_corners = False , align_mode = 0
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
Bicubic interpolation:
if:
align_corners = False
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
Trilinear interpolation:
if:
align_corners = False , align_mode = 0
input : (N,C,D_in,H_in,W_in)
output: (N,C,D_out,H_out,W_out) where:
D_out = (D_{in}+0.5) * scale_{factor} - 0.5
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,D_in,H_in,W_in)
output: (N,C,D_out,H_out,W_out) where:
D_out = D_{in} * scale_{factor}
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
https://en.wikipedia.org/wiki/Linear_interpolation.
For details of linear interpolation, please refer to Wikipedia:
For details of nearest neighbor interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
For details of bilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation.
For details of bicubic interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bicubic_interpolation
For details of trilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Trilinear_interpolation.
Parameters:
x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
its data format is specified by :attr:`data_format`.
size (list|tuple|Tensor|None): Output shape of image resize
layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
If a Tensor Variable, its dimensions size should be a 1.
scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
least one of :attr:`size` or :attr:`scale_factor` must be set.
And :attr:`size` has a higher priority than :attr:`scale_factor`. Has to match input size if it is either a list or a tuple or a Tensor.
Default: None.
mode (str): The resample method. It supports 'linear', 'nearst', 'bilinear',
'bicubic' and 'trilinear' currently. Default: 'nearest'
align_corners(bool) : An optional bool, If True, the centers of the 4 corner pixels of the
input and output tensors are aligned, preserving the values at the
corner pixels.
Default: False
align_mode(int) : An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
src_idx = scale_factor*dst_index.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
`"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
name(str, optional): The default value is None.
Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`
Returns:
A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
Raises:
TypeError: size should be a list or tuple or Tensor.
ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
'trilinear', 'bicubic', or 'nearest' currently.
ValueError: 'linear' only support 3-D tensor.
ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
ValueError: 'trilinear' only support 5-D tensor.
ValueError: One of size and scale_factor must not be None.
ValueError: size length should be 1 for input 3-D tensor.
ValueError: size length should be 2 for input 4-D tensor.
ValueError: size length should be 3 for input 5-D tensor.
ValueError: scale_factor should be greater than zero.
TypeError: align_corners should be a bool value
ValueError: align_mode can only be '0' or '1'
ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
paddle.disable_static()
input_data = np.random.rand(2,3,6,10).astype("float32")
upsample_out = paddle.nn.Upsample(size=[12,12])
input = paddle.to_tensor(input_data)
output = upsample_out(x=input)
print(output.shape)
# [2L, 3L, 12L, 12L]
"""
def __init__(self,
size=None,
scale_factor=None,
mode='nearest',
align_corners=False,
align_mode=0,
data_format='NCHW',
name=None):
super(Upsample, self).__init__()
self.size = size
self.scale_factor = scale_factor
self.mode = mode.lower()
self.align_corners = align_corners
self.align_mode = align_mode
self.data_format = data_format
self.name = name
def forward(self, x):
out = F.interpolate(
x,
size=self.size,
scale_factor=self.scale_factor,
mode=self.mode,
align_corners=self.align_corners,
align_mode=self.align_mode,
data_format=self.data_format,
name=self.name)
return out
class Bilinear(layers.Layer):
"""
This layer performs bilinear on two inputs.
.. math::
out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,size-1
out = out + b
In this formula:
- :math:`x1`: the first input contains in1_features elements, shape is [batch_size, in1_features].
- :math:`x2`: the second input contains in2_features elements, shape is [batch_size, in2_features].
- :math:`W_{i}`: the i-th learned weight, shape is [in1_features, in2_features], and learned weight's shape is [out_features, in1_features, in2_features].
- :math:`out_{i}`: the i-th element of out, shape is [batch_size, out_features].
- :math:`b`: the learned bias, shape is [1, out_features].
- :math:`x2^\mathrm{T}`: the transpose of :math:`x2`.
Parameters:
in1_features (int): The dimension of each first input(`x1`).
in2_features (int): The dimension of each second input(`x2`).
out_features (int): The dimension of output of this layer.
weight_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
this layer. The default value is None.
bias_attr (ParamAttr, optional): The parameter attribute for the bias
of this layer. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. The default value is None.
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
Attribute:
**weight** (Parameter): the learnable weights of this layer.
**bias** (Parameter): the learnable bias of this layer.
Returns:
Tensor: A 2-D Tensor of shape [batch_size, out_features].
Examples:
.. code-block:: python
import paddle
import numpy
paddle.disable_static()
layer1 = numpy.random.random((5, 5)).astype('float32')
layer2 = numpy.random.random((5, 4)).astype('float32')
bilinear = paddle.nn.Bilinear(
in1_features=5, in2_features=4, out_features=1000)
result = bilinear(paddle.to_tensor(layer1),
paddle.to_tensor(layer2)) # result shape [5, 1000]
"""
def __init__(self,
in1_features,
in2_features,
out_features,
weight_attr=None,
bias_attr=None,
name=None):
super(Bilinear, self).__init__()
self._weight_attr = weight_attr
self._bias_attr = bias_attr
self._name = name
self._in1_features = in1_features
self._in2_features = in2_features
self._out_features = out_features
self._dtype = self._helper.get_default_dtype()
weight_shape = [
self._out_features, self._in1_features, self._in2_features
]
self.weight = self.create_parameter(
attr=self._weight_attr,
shape=weight_shape,
dtype=self._dtype,
is_bias=False)
bias_shape = [1, self._out_features]
self.bias = self.create_parameter(
attr=self._bias_attr,
shape=bias_shape,
dtype=self._dtype,
is_bias=True)
def forward(self, x1, x2):
return F.bilinear(x1, x2, self.weight, self.bias, self._name)
class Dropout(layers.Layer):
"""
Dropout is a regularization technique for reducing overfitting by preventing
neuron co-adaption during training as described in the paper:
`Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_
The dropout operator randomly sets the outputs of some units to zero, while upscale others
according to the given dropout probability.
See ``paddle.nn.functional.dropout`` for more details.
In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
Parameters:
p (float | int): Probability of setting units to zero. Default: 0.5
axis (int | list): The axis along which the dropout is performed. Default None.
mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer']
1. upscale_in_train(default), upscale the output at training time
- train: out = input * mask / ( 1.0 - p )
- inference: out = input
2. downscale_in_infer, downscale the output at inference
- train: out = input * mask
- inference: out = input * (1.0 - p)
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: N-D tensor.
- output: N-D tensor, the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = np.array([[1,2,3], [4,5,6]]).astype('float32')
x = paddle.to_tensor(x)
m = paddle.nn.Dropout(p=0.5)
y_train = m(x)
m.eval() # switch the model to test phase
y_test = m(x)
print(x.numpy())
print(y_train.numpy())
print(y_test.numpy())
"""
def __init__(self, p=0.5, axis=None, mode="upscale_in_train", name=None):
super(Dropout, self).__init__()
self.p = p
self.axis = axis
self.mode = mode
self.name = name
def forward(self, input):
out = F.dropout(
input,
p=self.p,
axis=self.axis,
training=self.training,
mode=self.mode,
name=self.name)
return out
class Dropout2D(layers.Layer):
"""
Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
a channel is a 2D feature map with the shape `HW`). Each channel will be zeroed out independently
on every forward call with probability `p` using samples from a Bernoulli distribution.
Dropout2D will help promote independence between feature maps as described in the paper:
`Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
See ``paddle.nn.functional.dropout2d`` for more details.
In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
Parameters:
p (float, optional): Probability of setting units to zero. Default: 0.5
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from:
`NCHW`, `NHWC`. The default is `NCHW`. When it is `NCHW`, the data is
stored in the order of: [batch_size, input_channels, input_height, input_width].
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: 4-D tensor.
- output: 4-D tensor, the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
x = paddle.to_tensor(x)
m = paddle.nn.Dropout2D(p=0.5)
y_train = m(x)
m.eval() # switch the model to test phase
y_test = m(x)
print(x.numpy())
print(y_train.numpy())
print(y_test.numpy())
"""
def __init__(self, p=0.5, data_format='NCHW', name=None):
super(Dropout2D, self).__init__()
self.p = p
self.data_format = data_format
self.name = name
def forward(self, input):
out = F.dropout2d(
input,
p=self.p,
training=self.training,
data_format=self.data_format,
name=self.name)
return out
class Dropout3D(layers.Layer):
"""
Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
on every forward call with probability `p` using samples from a Bernoulli distribution.
Dropout3D will help promote independence between feature maps as described in the paper:
`Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
See ``paddle.nn.functional.dropout3d`` for more details.
In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
Parameters:
p (float | int): Probability of setting units to zero. Default: 0.5
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from:
`NCDHW`, `NDHWC`. The default is `NCDHW`. When it is `NCDHW`, the data is
stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: 5-D tensor.
- output: 5-D tensor, the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
x = paddle.to_tensor(x)
m = paddle.nn.Dropout3D(p=0.5)
y_train = m(x)
m.eval() # switch the model to test phase
y_test = m(x)
print(x.numpy())
print(y_train.numpy())
print(y_test.numpy())
"""
def __init__(self, p=0.5, data_format='NCDHW', name=None):
super(Dropout3D, self).__init__()
self.p = p
self.data_format = data_format
self.name = name
def forward(self, input):
out = F.dropout3d(
input,
p=self.p,
training=self.training,
data_format=self.data_format,
name=self.name)
return out
class AlphaDropout(layers.Layer):
"""
Alpha Dropout is a type of Dropout that maintains the self-normalizing property. For an input with
zero mean and unit standard deviation, the output of Alpha Dropout maintains the original mean and
standard deviation of the input. Alpha Dropout fits well to SELU activate function by randomly setting
activations to the negative saturation value.
For more information, please refer to:
`Self-Normalizing Neural Networks <https://arxiv.org/abs/1706.02515>`_
In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
Parameters:
p (float | int): Probability of setting units to zero. Default: 0.5
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: N-D tensor.
- output: N-D tensor, the same shape as input.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = np.array([[-1, 1], [-1, 1]]).astype('float32')
x = paddle.to_tensor(x)
m = paddle.nn.AlphaDropout(p=0.5)
y_train = m(x)
m.eval() # switch the model to test phase
y_test = m(x)
print(x.numpy())
print(y_train.numpy())
# [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
print(y_test.numpy())
"""
def __init__(self, p=0.5, name=None):
super(AlphaDropout, self).__init__()
self.p = p
self.name = name
def forward(self, input):
out = F.alpha_dropout(
input, p=self.p, training=self.training, name=self.name)
return out
class Pad1D(layers.Layer):
"""
This interface is used to construct a callable object of the ``Pad1D`` class.
Pad tensor according to 'pad', 'mode' and 'value'.
If mode is 'reflect', pad[0] and pad[1] must be no greater than width-1.
Parameters:
padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right).
mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
When in 'constant' mode, this op uses a constant value to pad the input tensor.
When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
When in 'replicate' mode, uses input boundaries to pad the input tensor.
When in 'circular' mode, uses circular input to pad the input tensor.
Default is 'constant'.
value (float32): The value to fill the padded areas. Default is 0.0
data_format (str): An string from: "NCL", "NLC". Specify the data format of the input data.
Default is "NCL"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[1., 2., 3.],
[4., 5., 6.]]]
padding = [1, 2],
mode = "constant"
value = 0.0
Out = [[[0. 1. 2. 3. 0. 0.]
[0. 4. 5. 6. 0. 0.]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
input_shape = (1, 2, 3)
pad = [1, 2]
mode = "constant"
data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
my_pad = nn.Pad1D(padding=pad, mode=mode)
result = my_pad(data)
print(result)
# [[[0. 1. 2. 3. 0. 0.]
# [0. 4. 5. 6. 0. 0.]]]
"""
def __init__(self,
padding,
mode='constant',
value=0.0,
data_format="NCL",
name=None):
super(Pad1D, self).__init__()
self._pad = padding
self._mode = mode
self._value = value
self._data_format = data_format
self._name = name
def forward(self, x):
return F.pad(x,
pad=self._pad,
mode=self._mode,
value=self._value,
data_format=self._data_format,
name=self._name)
class Pad2D(layers.Layer):
"""
This interface is used to construct a callable object of the ``Pad2D`` class.
Pad tensor according to 'pad', 'mode' and 'value'.
If mode is 'reflect', pad[0] and pad[1] must be no greater
than width-1. The height dimension has the same condition.
Parameters:
padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
When in 'constant' mode, this op uses a constant value to pad the input tensor.
When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
When in 'replicate' mode, uses input boundaries to pad the input tensor.
When in 'circular' mode, uses circular input to pad the input tensor.
Default is 'constant'.
value (float32): The value to fill the padded areas. Default is 0.0
data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
Default is "NCHW"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[[1., 2., 3.],
[4., 5., 6.]]]]
padding = [1, 1, 0, 0]
mode = "constant"
value = 0.0
Out = [[[[0. 1. 2. 3. 0.]
[0. 4. 5. 6. 0.]]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
input_shape = (1, 1, 2, 3)
pad = [1, 0, 1, 2]
mode = "constant"
data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
my_pad = nn.Pad2D(padding=pad, mode=mode)
result = my_pad(data)
print(result)
# [[[[0. 0. 0. 0.]
# [0. 1. 2. 3.]
# [0. 4. 5. 6.]
# [0. 0. 0. 0.]
# [0. 0. 0. 0.]]]]
"""
def __init__(self,
padding,
mode='constant',
value=0.0,
data_format="NCHW",
name=None):
super(Pad2D, self).__init__()
self._pad = padding
self._mode = mode
self._value = value
self._data_format = data_format
self._name = name
def forward(self, x):
return F.pad(x,
pad=self._pad,
mode=self._mode,
value=self._value,
data_format=self._data_format,
name=self._name)
class Pad3D(layers.Layer):
"""
This interface is used to construct a callable object of the ``Pad3D`` class.
Pad tensor according to 'pad', 'mode' and 'value'.
If mode is 'reflect', pad[0] and pad[1] must be no greater
than width-1. The height and depth dimension has the same condition.
Parameters:
padding (Tensor | List[int32]): The padding size with data type int32. [len(padding)/2] dimensions
of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
When in 'constant' mode, this op uses a constant value to pad the input tensor.
When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
When in 'replicate' mode, uses input boundaries to pad the input tensor.
When in 'circular' mode, uses circular input to pad the input tensor.
Default is 'constant'.
value (float32): The value to fill the padded areas. Default is 0.0
data_format (str): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
Default is "NCDHW"
name (str, optional) : The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
None
Examples:
.. code-block:: text
x = [[[[[1., 2., 3.],
[4., 5., 6.]]]]]
padding = [1, 2, 0, 0, 0, 0]
mode = "constant"
value = 0.0
Out = [[[[[0. 1. 2. 3. 0. 0.]
[0. 4. 5. 6. 0. 0.]]]]]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
input_shape = (1, 1, 1, 2, 3)
pad = [1, 0, 1, 2, 0, 0]
mode = "constant"
data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1
my_pad = nn.Pad3D(padding=pad, mode=mode)
result = my_pad(data)
print(result)
# [[[[[0. 0. 0. 0.]
# [0. 1. 2. 3.]
# [0. 4. 5. 6.]
# [0. 0. 0. 0.]
# [0. 0. 0. 0.]]]]]
"""
def __init__(self,
padding,
mode='constant',
value=0.0,
data_format="NCDHW",
name=None):
super(Pad3D, self).__init__()
self._pad = padding
self._mode = mode
self._value = value
self._data_format = data_format
self._name = name
def forward(self, x):
return F.pad(x,
pad=self._pad,
mode=self._mode,
value=self._value,
data_format=self._data_format,
name=self._name)
class CosineSimilarity(layers.Layer):
"""
This interface is used to compute cosine similarity between x1 and x2 along axis.
Parameters:
axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
eps(float): Small value to avoid division by zero. Default is 1e-8.
Returns:
None
Examples:
.. code-block:: text
Case 0:
x1 = [[0.8024077 0.9927354 0.27238318 0.8344984 ]
[0.48949873 0.5797396 0.65444374 0.66510963]
[0.1031398 0.9614342 0.08365563 0.6796464 ]
[0.10760343 0.7461209 0.7726148 0.5801006 ]]
x2 = [[0.62913156 0.1536727 0.9847992 0.04591406]
[0.9098952 0.15715368 0.8671125 0.3156102 ]
[0.4427798 0.54136837 0.5276275 0.32394758]
[0.3769419 0.8535014 0.48041078 0.9256797 ]]
axis = 1
eps = 1e-8
Out: [0.5275037 0.8368967 0.75037485 0.9245899]
Code Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
np.random.seed(0)
x1 = np.random.rand(2,3)
x2 = np.random.rand(2,3)
x1 = paddle.to_tensor(x1)
x2 = paddle.to_tensor(x2)
cos_sim_func = nn.CosineSimilarity(axis=0)
result = cos_sim_func(x1, x2)
print(result)
# [0.99806249 0.9817672 0.94987036]
"""
def __init__(self, axis=1, eps=1e-8):
super(CosineSimilarity, self).__init__()
self._axis = axis
self._eps = eps
def forward(self, x1, x2):
return F.cosine_similarity(x1, x2, axis=self._axis, eps=self._eps)
class Embedding(layers.Layer):
"""
**Embedding Layer**
This interface is used to construct a callable object of the ``Embedding`` class.
For specific usage, refer to code examples. It implements the function of the Embedding Layer.
This layer is used to lookup embeddings vector of ids provided by :attr:`x` .
It automatically constructs a 2D embedding matrix based on the
input :attr:`num_embeddings` and attr:`embedding_dim`.
The shape of output Tensor is generated by appending an emb_size dimension to the
last dimension of the input Tensor shape.
**Note:** The id in :attr:`x` must satisfy :math:`0 =< id < num_embeddings` ,
otherwise the program will throw an exception and exit.
.. code-block:: text
Case 1:
input is a Tensor. padding_idx = -1
input.data = [[1, 3], [2, 4], [4, 127]
input.shape = [3, 2]
Given size = [128, 16]
output is a Tensor:
out.shape = [3, 2, 16]
out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
[0.345421456, 0.524563927, ..., 0.144534654]],
[[0.345249859, 0.124939536, ..., 0.194353745],
[0.945345345, 0.435394634, ..., 0.435345365]],
[[0.945345345, 0.435394634, ..., 0.435345365],
[0.0, 0.0, ..., 0.0 ]]] # padding data
The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
It will pad all-zero data when ids is 127.
Parameters:
num_embeddings (int): Just one element which indicate the size
of the dictionary of embeddings.
embedding_dim: Just one element which indicate the size of each embedding vector respectively.
padding_idx(int|long|None): padding_idx needs to be in the interval [-num_embeddings, num_embeddings).
If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
If set None, it makes no effect to output. Default: None.
sparse(bool): The flag indicating whether to use sparse update. This parameter only
affects the performance of the backwards gradient update. It is recommended to set
True because sparse update is faster. But some optimizer does not support sparse update,
such as :ref:`api_optimizer_AdadeltaOptimizer` , :ref:`api_optimizer_AdamaxOptimizer` ,
:ref:`api_optimizer_DecayedAdagradOptimizer` , :ref:`api_optimizer_FtrlOptimizer` ,
:ref:`api_optimizer_LambOptimizer` and :ref:`api_optimizer_LarsMomentumOptimizer` .
In these case, sparse must be False. Default: False.
weight_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
The local word vector needs to be transformed into numpy format, and the shape of local word
vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
is used to load custom or pre-trained word vectors. See code example for details.
name(str|None): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Attribute:
**weight** (Parameter): the learnable weights of this layer.
Returns:
None
Examples:
.. code-block:: python
import paddle
import numpy as np
x_data = np.arange(3, 6).reshape((3, 1)).astype(np.int64)
y_data = np.arange(6, 12).reshape((3, 2)).astype(np.float32)
paddle.disable_static(paddle.CPUPlace())
x = paddle.to_tensor(x_data, stop_gradient=False)
y = paddle.to_tensor(y_data, stop_gradient=False)
embedding = paddle.nn.Embedding(10, 3, sparse=True)
w0=np.full(shape=(10, 3), fill_value=2).astype(np.float32)
embedding.weight.set_value(w0)
adam = paddle.optimizer.Adam(parameters=[embedding.weight], learning_rate=0.01)
adam.clear_grad()
# weight.shape = [10, 3]
# x.data = [[3],[4],[5]]
# x.shape = [3, 1]
# out.data = [[2,2,2], [2,2,2], [2,2,2]]
# out.shape = [3, 1, 3]
out=embedding(x)
out.backward()
adam.step()
"""
def __init__(self,
num_embeddings,
embedding_dim,
padding_idx=None,
sparse=False,
weight_attr=None,
name=None):
super(Embedding, self).__init__()
self._num_embeddings = num_embeddings
self._embedding_dim = embedding_dim
self._sparse = sparse
self._is_distributed = False
self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
num_embeddings + padding_idx)
if self._num_embeddings <= 0:
raise ValueError("num_embeddings must be gather than 0")
if self._embedding_dim <= 0:
raise ValueError("embedding_dim must be gather than 0")
if self._padding_idx >= num_embeddings or self._padding_idx < -num_embeddings:
raise ValueError("padding_idx must be within [-{}, {})".format(
num_embeddings, num_embeddings))
self._dtype = self._helper.get_default_dtype()
self._size = [self._num_embeddings, self._embedding_dim]
self._weight_attr = weight_attr
self._remote_prefetch = False
self._name = name
self.weight = self.create_parameter(
attr=self._weight_attr,
shape=self._size,
dtype=self._dtype,
is_bias=False)
def forward(self, x):
return F.embedding(
x,
weight=self.weight,
padding_idx=self._padding_idx,
sparse=self._sparse,
name=self._name)