You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/nn/layer/distance.py

103 lines
3.9 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['PairwiseDistance']
import numpy as np
import paddle
from ...fluid.dygraph import layers
from ...fluid.framework import core, in_dygraph_mode
from ...fluid.data_feeder import check_variable_and_dtype, check_type
from ...fluid.layer_helper import LayerHelper
class PairwiseDistance(layers.Layer):
"""
This operator computes the pairwise distance between two vectors. The
distance is calculated by p-oreder norm:
.. math::
\Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}.
Parameters:
p (float): The order of norm. The default value is 2.
epsilon (float, optional): Add small value to avoid division by zero,
default value is 1e-6.
keepdim (bool, optional): Whether to reserve the reduced dimension
in the output Tensor. The result tensor is one dimension less than
the result of ``'x-y'`` unless :attr:`keepdim` is True, default
value is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
x: :math:`[N, D]` where `D` is the dimension of vector, available dtype
is float32, float64.
y: :math:`[N, D]`, y have the same shape and dtype as x.
out: :math:`[N]`. If :attr:`keepdim` is ``True``, the out shape is :math:`[N, 1]`.
The same dtype as input tensor.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_np = np.array([[1., 3.], [3., 5.]]).astype(np.float64)
y_np = np.array([[5., 6.], [7., 8.]]).astype(np.float64)
x = paddle.to_tensor(x_np)
y = paddle.to_tensor(y_np)
dist = paddle.nn.PairwiseDistance()
distance = dist(x, y)
print(distance.numpy()) # [5. 5.]
"""
def __init__(self, p=2., epsilon=1e-6, keepdim=False, name=None):
super(PairwiseDistance, self).__init__()
self.p = p
self.epsilon = epsilon
self.keepdim = keepdim
self.name = name
check_type(self.p, 'porder', (float, int), 'PairwiseDistance')
check_type(self.epsilon, 'epsilon', (float), 'PairwiseDistance')
check_type(self.keepdim, 'keepdim', (bool), 'PairwiseDistance')
def forward(self, x, y):
if in_dygraph_mode():
sub = core.ops.elementwise_sub(x, y)
return core.ops.p_norm(sub, 'axis', 1, 'porder', self.p, 'keepdim',
self.keepdim, 'epsilon', self.epsilon)
check_variable_and_dtype(x, 'x', ['float32', 'float64'],
'PairwiseDistance')
check_variable_and_dtype(y, 'y', ['float32', 'float64'],
'PairwiseDistance')
sub = paddle.fluid.layers.elementwise_sub(x, y)
helper = LayerHelper("PairwiseDistance", name=self.name)
attrs = {
'axis': 1,
'porder': self.p,
'keepdim': self.keepdim,
'epsilon': self.epsilon,
}
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='p_norm', inputs={'X': sub}, outputs={'Out': out}, attrs=attrs)
return out