You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/static/nn/common.py

343 lines
15 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle.fluid.framework import static_only
__all__ = ['fc', 'deform_conv2d']
@static_only
def fc(x,
size,
num_flatten_dims=1,
weight_attr=None,
bias_attr=None,
activation=None,
name=None):
"""
Fully-Connected layer can take a tensor or a list of tensor as its inputs.
It creates a 2-D weight tensor for each input tensor, which represents its
weight matrix from each input unit to each output unit. The fully connected
layer multiplies each input tensor with its corresponding weight to produce
an output tensor with shape :math:`[batch\_size, *, size]` , where :math:`*`
means any number of additional dimensions. If a list of tensor is given,
the results of multiple output tensors with shape :math:`[batch\_size, *, size]`
will be summed up. If :attr:`bias_attr` is not False, a 1-D bias tensor will
be created and added to the output. Finally, if :attr:`activation` is not None,
it will be applied to the output as well.
For a single input tensor :math:`X` , the equation is:
.. math::
Out = Act({XW + b})
For a list of input tensor, the equation is:
.. math::
Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
where:
* :math:`N`: The number of the input tensors. :math:`N` equals to :math:`len(X)` if :math:`X` is list of tensor.
* :math:`X_i`: The i-th input tensor.
* :math:`W_i`: The i-th weight matrix corresponding i-th input tensor.
* :math:`b`: The bias created by this layer (if needed).
* :math:`Act`: The activation function.
* :math:`Out`: The output tensor.
.. code-block:: text
# Case 1, input is a single tensor:
x.data = [[[0.1, 0.2],
[0.3, 0.4]]]
x.shape = (1, 2, 2) # 1 is batch_size
out = paddle.static.nn.fc(x=x, size=1, num_flatten_dims=2)
# Get the output:
out.data = [[0.83234344], [0.34936576]]
out.shape = (1, 2, 1)
# Case 2, input is a list of tensor:
x0.data = [[[0.1, 0.2],
[0.3, 0.4]]]
x0.shape = (1, 2, 2) # 1 is batch_size
x1.data = [[[0.1, 0.2, 0.3]]]
x1.shape = (1, 1, 3)
out = paddle.static.nn.fc(x=[x0, x1], size=2)
# Get the output:
out.data = [[0.18669507, 0.1893476]]
out.shape = (1, 2)
Args:
x (Tensor|list of Tensor): A tensor or a list of tensor. The number of dimensions
of each tensor is at least 2. The data type should be float16, float32 or float64.
size (int): The number of output units in this layer, which also means the feature
size of output tensor.
num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
two dimensions. If this happens, the multi-dimensional tensor will first be flattened
into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
tensor is flattened: the first :math:`num\_flatten\_dims` (inclusive, index starts from 1)
dimensions will be flatten to form the first dimension of the final matrix (height of
the matrix), and the rest :math:`rank(x) - num\_flatten\_dims` dimensions are
flattened to form the second dimension of the final matrix (width of the matrix).
For example, assuming that :attr:`x` is a 5-dimensional tensor with a shape
:math:`[2, 3, 4, 5, 6]` , and :attr:`num_flatten_dims` = 3.
Then, the flattened matrix will have a shape :math:`[2 * 3 * 4, 5 * 6] = [24, 30]` .
Default: 1.
weight_attr (ParamAttr, optional): The attribute for the learnable weight.
The default value is None, and the weight will be initialized to zero.
For detailed information, please refer to :attr:`paddle.ParamAttr`.
bias_attr (ParamAttr|bool, optional): The attribute of the learnable bias.
If it is set to False, no bias will be added to the output.
If it is set to None or one kind of ParamAttr, a bias parameter will
be created according to ParamAttr. For detailed information, please refer
to :attr:`paddle.ParamAttr`. The default value is None and the bias will be
initialized to zero.
activation (str, optional): Activation to be applied to the output of
this layer, such as tanh, softmax, sigmoid, relu. For more information,
please refer to :ref:`api_guide_activations_en` . Default: None.
name (str, optional): The default value is None. Normally there is no need for user to set
it. For more information, please refer to :ref:`api_guide_Name` .
Returns:
Tensor, its shape is :math:`[batch\_size, *, size]` , and the data type is same with input.
Raises:
ValueError: If dimensions of the input tensor is less than 2.
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
# When input is a single tensor
x = paddle.static.data(name="x", shape=[1, 2, 2], dtype="float32")
# x: [[[0.1 0.2]
# [0.3 0.4]]]
out = paddle.static.nn.fc(
x=x,
size=1,
num_flatten_dims=2,
weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=0.5)),
bias_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=1.0)))
# out: [[[1.15]
# [1.35]]]
# When input is multiple tensors
x0 = paddle.static.data(name="x0", shape=[1, 2, 2], dtype="float32")
# x0: [[[0.1 0.2]
# [0.3 0.4]]]
x1 = paddle.static.data(name="x1", shape=[1, 1, 3], dtype="float32")
# x1: [[[0.1 0.2 0.3]]]
out = paddle.static.nn.fc(
x=[x0, x1],
size=2,
weight_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=0.5)),
bias_attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(value=1.0)))
# out: [[1.8 1.8]]
"""
return paddle.fluid.layers.fc(input=x,
size=size,
num_flatten_dims=num_flatten_dims,
param_attr=weight_attr,
bias_attr=bias_attr,
act=activation,
name=name)
@static_only
def deform_conv2d(x,
offset,
mask,
num_filters,
filter_size,
stride=1,
padding=0,
dilation=1,
groups=1,
deformable_groups=1,
im2col_step=1,
weight_attr=None,
bias_attr=None,
name=None):
"""
Compute 2-D deformable convolution on 4-D input.
Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
Deformable Convolution v2:
.. math::
y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
Deformable Convolution v1:
.. math::
y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location,
Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
<https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
Example:
- Input:
X shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`
Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Args:
x (Tensor): The input image with [N, C, H, W] format. A Tensor with type
float32, float64.
offset (Tensor): The input coordinate offset of deformable convolution layer.
A Tensor with type float32, float64.
mask (Tensor, Optional): The input mask of deformable convolution layer.
A Tensor with type float32, float64. It should be None when you use
deformable convolution v1.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple, Optional): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple, Optional): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple, Optional): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
groups (int, Optional): The groups number of the deformable conv layer. According to
grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1.
deformable_groups (int, Optional): The number of deformable group partitions.
Default: deformable_groups = 1.
im2col_step (int, Optional): Maximum number of images per im2col computation;
The total batch size should be devisable by this value or smaller
than this value; if you face out of memory problem, you can try
to use a smaller value here.
Default: im2col_step = 1.
weight_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
of deformable conv. If it is set to None or one attribute of ParamAttr,
deformable conv will create ParamAttr as weight_attr.
If the Initializer of the weight_attr is not set, the parameter is
initialized with :math:`Normal(0.0, std)`, and the
:math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
deformable conv layer. If it is set to False, no bias will be added
to the output units. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
Generally, no setting is required. Default: None.
Returns:
Tensor: The tensor storing the deformable convolution \
result. A Tensor with type float32, float64.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
#deformable conv v2:
import paddle
paddle.enable_static()
C_in, H_in, W_in = 3, 32, 32
filter_size, deformable_groups = 3, 1
data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
mask = paddle.static.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
out = paddle.static.nn.deform_conv2d(x=data, offset=offset, mask=mask,
num_filters=2, filter_size=filter_size, padding=1)
#deformable conv v1:
import paddle
paddle.enable_static()
C_in, H_in, W_in = 3, 32, 32
filter_size, deformable_groups = 3, 1
data = paddle.static.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
offset = paddle.static.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
out = paddle.static.nn.deform_conv2d(x=data, offset=offset, mask=None,
num_filters=2, filter_size=filter_size, padding=1)
"""
if mask is None:
return paddle.fluid.layers.deformable_conv(
input=x,
offset=offset,
mask=mask,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
deformable_groups=deformable_groups,
im2col_step=im2col_step,
param_attr=weight_attr,
bias_attr=bias_attr,
modulated=False,
name=name)
else:
return paddle.fluid.layers.deformable_conv(
input=x,
offset=offset,
mask=mask,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
deformable_groups=deformable_groups,
im2col_step=im2col_step,
param_attr=weight_attr,
bias_attr=bias_attr,
modulated=True,
name=name)