You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
3.0 KiB
101 lines
3.0 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import contextlib
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
|
|
from paddle import Model, set_device
|
|
from paddle.static import InputSpec as Input
|
|
from paddle.nn.layer.loss import CrossEntropyLoss
|
|
from paddle.metric import Accuracy
|
|
from paddle.vision.models import LeNet
|
|
from paddle.vision.datasets import MNIST
|
|
|
|
|
|
class MnistDataset(MNIST):
|
|
def __init__(self, mode, return_label=True):
|
|
super(MnistDataset, self).__init__(mode=mode)
|
|
self.return_label = return_label
|
|
|
|
def __getitem__(self, idx):
|
|
img = np.reshape(self.images[idx], [1, 28, 28])
|
|
if self.return_label:
|
|
return img, np.array(self.labels[idx]).astype('int64')
|
|
return img,
|
|
|
|
def __len__(self):
|
|
return len(self.images)
|
|
|
|
|
|
def compute_accuracy(pred, gt):
|
|
pred = np.argmax(pred, -1)
|
|
gt = np.array(gt)
|
|
|
|
correct = pred[:, np.newaxis] == gt
|
|
|
|
return np.sum(correct) / correct.shape[0]
|
|
|
|
|
|
@unittest.skipIf(not fluid.is_compiled_with_cuda(),
|
|
'CPU testing is not supported')
|
|
class TestDistTraning(unittest.TestCase):
|
|
def test_static_multiple_gpus(self):
|
|
device = set_device('gpu')
|
|
|
|
fluid.enable_dygraph(device)
|
|
im_shape = (-1, 1, 28, 28)
|
|
batch_size = 128
|
|
|
|
inputs = [Input(im_shape, 'float32', 'image')]
|
|
labels = [Input([None, 1], 'int64', 'label')]
|
|
|
|
model = Model(LeNet(), inputs, labels)
|
|
optim = fluid.optimizer.Momentum(
|
|
learning_rate=0.001, momentum=.9, parameter_list=model.parameters())
|
|
model.prepare(optim, CrossEntropyLoss(), Accuracy())
|
|
|
|
train_dataset = MnistDataset(mode='train')
|
|
val_dataset = MnistDataset(mode='test')
|
|
test_dataset = MnistDataset(mode='test', return_label=False)
|
|
|
|
cbk = paddle.callbacks.ProgBarLogger(50)
|
|
model.fit(train_dataset,
|
|
val_dataset,
|
|
epochs=2,
|
|
batch_size=batch_size,
|
|
callbacks=cbk)
|
|
|
|
eval_result = model.evaluate(val_dataset, batch_size=batch_size)
|
|
|
|
output = model.predict(
|
|
test_dataset, batch_size=batch_size, stack_outputs=True)
|
|
|
|
np.testing.assert_equal(output[0].shape[0], len(test_dataset))
|
|
|
|
acc = compute_accuracy(output[0], val_dataset.labels)
|
|
|
|
np.testing.assert_allclose(acc, eval_result['acc'])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|