You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/tests/dist_hapi_mnist_dynamic.py

101 lines
3.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
import unittest
import numpy as np
import contextlib
import paddle
import paddle.fluid as fluid
from paddle import Model, set_device
from paddle.static import InputSpec as Input
from paddle.nn.layer.loss import CrossEntropyLoss
from paddle.metric import Accuracy
from paddle.vision.models import LeNet
from paddle.vision.datasets import MNIST
class MnistDataset(MNIST):
def __init__(self, mode, return_label=True):
super(MnistDataset, self).__init__(mode=mode)
self.return_label = return_label
def __getitem__(self, idx):
img = np.reshape(self.images[idx], [1, 28, 28])
if self.return_label:
return img, np.array(self.labels[idx]).astype('int64')
return img,
def __len__(self):
return len(self.images)
def compute_accuracy(pred, gt):
pred = np.argmax(pred, -1)
gt = np.array(gt)
correct = pred[:, np.newaxis] == gt
return np.sum(correct) / correct.shape[0]
@unittest.skipIf(not fluid.is_compiled_with_cuda(),
'CPU testing is not supported')
class TestDistTraning(unittest.TestCase):
def test_static_multiple_gpus(self):
device = set_device('gpu')
fluid.enable_dygraph(device)
im_shape = (-1, 1, 28, 28)
batch_size = 128
inputs = [Input(im_shape, 'float32', 'image')]
labels = [Input([None, 1], 'int64', 'label')]
model = Model(LeNet(), inputs, labels)
optim = fluid.optimizer.Momentum(
learning_rate=0.001, momentum=.9, parameter_list=model.parameters())
model.prepare(optim, CrossEntropyLoss(), Accuracy())
train_dataset = MnistDataset(mode='train')
val_dataset = MnistDataset(mode='test')
test_dataset = MnistDataset(mode='test', return_label=False)
cbk = paddle.callbacks.ProgBarLogger(50)
model.fit(train_dataset,
val_dataset,
epochs=2,
batch_size=batch_size,
callbacks=cbk)
eval_result = model.evaluate(val_dataset, batch_size=batch_size)
output = model.predict(
test_dataset, batch_size=batch_size, stack_outputs=True)
np.testing.assert_equal(output[0].shape[0], len(test_dataset))
acc = compute_accuracy(output[0], val_dataset.labels)
np.testing.assert_allclose(acc, eval_result['acc'])
if __name__ == '__main__':
unittest.main()