You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/tests/test_dataset_cifar.py

125 lines
4.2 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from paddle.vision.datasets import *
class TestCifar10Train(unittest.TestCase):
def test_main(self):
cifar = Cifar10(mode='train')
self.assertTrue(len(cifar) == 50000)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 50000)
data, label = cifar[idx]
data = np.array(data)
self.assertTrue(len(data.shape) == 3)
self.assertTrue(data.shape[2] == 3)
self.assertTrue(data.shape[1] == 32)
self.assertTrue(data.shape[0] == 32)
self.assertTrue(0 <= int(label) <= 9)
class TestCifar10Test(unittest.TestCase):
def test_main(self):
cifar = Cifar10(mode='test')
self.assertTrue(len(cifar) == 10000)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 10000)
data, label = cifar[idx]
data = np.array(data)
self.assertTrue(len(data.shape) == 3)
self.assertTrue(data.shape[2] == 3)
self.assertTrue(data.shape[1] == 32)
self.assertTrue(data.shape[0] == 32)
self.assertTrue(0 <= int(label) <= 9)
# test cv2 backend
cifar = Cifar10(mode='test', backend='cv2')
self.assertTrue(len(cifar) == 10000)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 10000)
data, label = cifar[idx]
self.assertTrue(len(data.shape) == 3)
self.assertTrue(data.shape[2] == 3)
self.assertTrue(data.shape[1] == 32)
self.assertTrue(data.shape[0] == 32)
self.assertTrue(0 <= int(label) <= 99)
with self.assertRaises(ValueError):
cifar = Cifar10(mode='test', backend=1)
class TestCifar100Train(unittest.TestCase):
def test_main(self):
cifar = Cifar100(mode='train')
self.assertTrue(len(cifar) == 50000)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 50000)
data, label = cifar[idx]
data = np.array(data)
self.assertTrue(len(data.shape) == 3)
self.assertTrue(data.shape[2] == 3)
self.assertTrue(data.shape[1] == 32)
self.assertTrue(data.shape[0] == 32)
self.assertTrue(0 <= int(label) <= 99)
class TestCifar100Test(unittest.TestCase):
def test_main(self):
cifar = Cifar100(mode='test')
self.assertTrue(len(cifar) == 10000)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 10000)
data, label = cifar[idx]
data = np.array(data)
self.assertTrue(len(data.shape) == 3)
self.assertTrue(data.shape[2] == 3)
self.assertTrue(data.shape[1] == 32)
self.assertTrue(data.shape[0] == 32)
self.assertTrue(0 <= int(label) <= 99)
# test cv2 backend
cifar = Cifar100(mode='test', backend='cv2')
self.assertTrue(len(cifar) == 10000)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 10000)
data, label = cifar[idx]
self.assertTrue(len(data.shape) == 3)
self.assertTrue(data.shape[2] == 3)
self.assertTrue(data.shape[1] == 32)
self.assertTrue(data.shape[0] == 32)
self.assertTrue(0 <= int(label) <= 99)
with self.assertRaises(ValueError):
cifar = Cifar100(mode='test', backend=1)
if __name__ == '__main__':
unittest.main()