You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/tests/test_datasets.py

246 lines
7.9 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import os
import numpy as np
import tempfile
import shutil
import cv2
import paddle.vision.transforms as T
from paddle.vision.datasets import *
from paddle.dataset.common import _check_exists_and_download
class TestFolderDatasets(unittest.TestCase):
def setUp(self):
self.data_dir = tempfile.mkdtemp()
self.empty_dir = tempfile.mkdtemp()
for i in range(2):
sub_dir = os.path.join(self.data_dir, 'class_' + str(i))
if not os.path.exists(sub_dir):
os.makedirs(sub_dir)
for j in range(2):
fake_img = (np.random.random((32, 32, 3)) * 255).astype('uint8')
cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img)
def tearDown(self):
shutil.rmtree(self.data_dir)
def test_dataset(self):
dataset_folder = DatasetFolder(self.data_dir)
for _ in dataset_folder:
pass
assert len(dataset_folder) == 4
assert len(dataset_folder.classes) == 2
dataset_folder = DatasetFolder(self.data_dir)
for _ in dataset_folder:
pass
def test_folder(self):
loader = ImageFolder(self.data_dir)
for _ in loader:
pass
loader = ImageFolder(self.data_dir)
for _ in loader:
pass
assert len(loader) == 4
def test_transform(self):
def fake_transform(img):
return img
transfrom = fake_transform
dataset_folder = DatasetFolder(self.data_dir, transform=transfrom)
for _ in dataset_folder:
pass
loader = ImageFolder(self.data_dir, transform=transfrom)
for _ in loader:
pass
def test_errors(self):
with self.assertRaises(RuntimeError):
ImageFolder(self.empty_dir)
with self.assertRaises(RuntimeError):
DatasetFolder(self.empty_dir)
with self.assertRaises(ValueError):
_check_exists_and_download('temp_paddle', None, None, None, False)
class TestMNISTTest(unittest.TestCase):
def test_main(self):
transform = T.Transpose()
mnist = MNIST(mode='test', transform=transform)
self.assertTrue(len(mnist) == 10000)
for i in range(len(mnist)):
image, label = mnist[i]
self.assertTrue(image.shape[0] == 1)
self.assertTrue(image.shape[1] == 28)
self.assertTrue(image.shape[2] == 28)
self.assertTrue(label.shape[0] == 1)
self.assertTrue(0 <= int(label) <= 9)
class TestMNISTTrain(unittest.TestCase):
def test_main(self):
transform = T.Transpose()
mnist = MNIST(mode='train', transform=transform)
self.assertTrue(len(mnist) == 60000)
for i in range(len(mnist)):
image, label = mnist[i]
self.assertTrue(image.shape[0] == 1)
self.assertTrue(image.shape[1] == 28)
self.assertTrue(image.shape[2] == 28)
self.assertTrue(label.shape[0] == 1)
self.assertTrue(0 <= int(label) <= 9)
# test cv2 backend
mnist = MNIST(mode='train', transform=transform, backend='cv2')
self.assertTrue(len(mnist) == 60000)
for i in range(len(mnist)):
image, label = mnist[i]
self.assertTrue(image.shape[0] == 1)
self.assertTrue(image.shape[1] == 28)
self.assertTrue(image.shape[2] == 28)
self.assertTrue(label.shape[0] == 1)
self.assertTrue(0 <= int(label) <= 9)
break
with self.assertRaises(ValueError):
mnist = MNIST(mode='train', transform=transform, backend=1)
class TestFASHIONMNISTTest(unittest.TestCase):
def test_main(self):
transform = T.Transpose()
mnist = FashionMNIST(mode='test', transform=transform)
self.assertTrue(len(mnist) == 10000)
for i in range(len(mnist)):
image, label = mnist[i]
self.assertTrue(image.shape[0] == 1)
self.assertTrue(image.shape[1] == 28)
self.assertTrue(image.shape[2] == 28)
self.assertTrue(label.shape[0] == 1)
self.assertTrue(0 <= int(label) <= 9)
class TestFASHIONMNISTTrain(unittest.TestCase):
def test_main(self):
transform = T.Transpose()
mnist = FashionMNIST(mode='train', transform=transform)
self.assertTrue(len(mnist) == 60000)
for i in range(len(mnist)):
image, label = mnist[i]
self.assertTrue(image.shape[0] == 1)
self.assertTrue(image.shape[1] == 28)
self.assertTrue(image.shape[2] == 28)
self.assertTrue(label.shape[0] == 1)
self.assertTrue(0 <= int(label) <= 9)
# test cv2 backend
mnist = FashionMNIST(mode='train', transform=transform, backend='cv2')
self.assertTrue(len(mnist) == 60000)
for i in range(len(mnist)):
image, label = mnist[i]
self.assertTrue(image.shape[0] == 1)
self.assertTrue(image.shape[1] == 28)
self.assertTrue(image.shape[2] == 28)
self.assertTrue(label.shape[0] == 1)
self.assertTrue(0 <= int(label) <= 9)
break
with self.assertRaises(ValueError):
mnist = FashionMNIST(mode='train', transform=transform, backend=1)
class TestFlowersTrain(unittest.TestCase):
def test_main(self):
flowers = Flowers(mode='train')
self.assertTrue(len(flowers) == 6149)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 6149)
image, label = flowers[idx]
image = np.array(image)
self.assertTrue(len(image.shape) == 3)
self.assertTrue(image.shape[2] == 3)
self.assertTrue(label.shape[0] == 1)
class TestFlowersValid(unittest.TestCase):
def test_main(self):
flowers = Flowers(mode='valid')
self.assertTrue(len(flowers) == 1020)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 1020)
image, label = flowers[idx]
image = np.array(image)
self.assertTrue(len(image.shape) == 3)
self.assertTrue(image.shape[2] == 3)
self.assertTrue(label.shape[0] == 1)
class TestFlowersTest(unittest.TestCase):
def test_main(self):
flowers = Flowers(mode='test')
self.assertTrue(len(flowers) == 1020)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 1020)
image, label = flowers[idx]
image = np.array(image)
self.assertTrue(len(image.shape) == 3)
self.assertTrue(image.shape[2] == 3)
self.assertTrue(label.shape[0] == 1)
# test cv2 backend
flowers = Flowers(mode='test', backend='cv2')
self.assertTrue(len(flowers) == 1020)
# traversal whole dataset may cost a
# long time, randomly check 1 sample
idx = np.random.randint(0, 1020)
image, label = flowers[idx]
self.assertTrue(len(image.shape) == 3)
self.assertTrue(image.shape[2] == 3)
self.assertTrue(label.shape[0] == 1)
with self.assertRaises(ValueError):
flowers = Flowers(mode='test', backend=1)
if __name__ == '__main__':
unittest.main()