You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
701 lines
25 KiB
701 lines
25 KiB
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import os
|
|
import numpy as np
|
|
import shutil
|
|
import tempfile
|
|
|
|
import paddle
|
|
from paddle import fluid
|
|
from paddle import to_tensor
|
|
from paddle.nn import Conv2D, Linear, ReLU, Sequential, Softmax
|
|
|
|
from paddle import Model
|
|
from paddle.static import InputSpec
|
|
from paddle.nn.layer.loss import CrossEntropyLoss
|
|
from paddle.metric import Accuracy
|
|
from paddle.vision.datasets import MNIST
|
|
from paddle.vision.models import LeNet
|
|
from paddle.io import DistributedBatchSampler, Dataset
|
|
from paddle.hapi.model import prepare_distributed_context
|
|
from paddle.fluid.dygraph.jit import declarative
|
|
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
|
|
|
|
|
|
class LeNetDygraph(paddle.nn.Layer):
|
|
def __init__(self, num_classes=10):
|
|
super(LeNetDygraph, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.features = Sequential(
|
|
Conv2D(
|
|
1, 6, 3, stride=1, padding=1),
|
|
ReLU(),
|
|
paddle.fluid.dygraph.Pool2D(2, 'max', 2),
|
|
Conv2D(
|
|
6, 16, 5, stride=1, padding=0),
|
|
ReLU(),
|
|
paddle.fluid.dygraph.Pool2D(2, 'max', 2))
|
|
|
|
if num_classes > 0:
|
|
self.fc = Sequential(
|
|
Linear(400, 120), Linear(120, 84), Linear(84, 10))
|
|
|
|
def forward(self, inputs):
|
|
x = self.features(inputs)
|
|
|
|
if self.num_classes > 0:
|
|
x = fluid.layers.flatten(x, 1)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
|
|
class MnistDataset(MNIST):
|
|
def __init__(self, mode, return_label=True, sample_num=None):
|
|
super(MnistDataset, self).__init__(mode=mode)
|
|
self.return_label = return_label
|
|
if sample_num:
|
|
self.images = self.images[:sample_num]
|
|
self.labels = self.labels[:sample_num]
|
|
|
|
def __getitem__(self, idx):
|
|
img, label = self.images[idx], self.labels[idx]
|
|
img = np.reshape(img, [1, 28, 28])
|
|
if self.return_label:
|
|
return img, np.array(self.labels[idx]).astype('int64')
|
|
return img,
|
|
|
|
def __len__(self):
|
|
return len(self.images)
|
|
|
|
|
|
def compute_acc(pred, label):
|
|
pred = np.argmax(pred, -1)
|
|
label = np.array(label)
|
|
correct = pred[:, np.newaxis] == label
|
|
return np.sum(correct) / correct.shape[0]
|
|
|
|
|
|
def dynamic_train(model, dataloader):
|
|
optim = fluid.optimizer.Adam(
|
|
learning_rate=0.001, parameter_list=model.parameters())
|
|
model.train()
|
|
for inputs, labels in dataloader:
|
|
outputs = model(inputs)
|
|
loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
|
|
avg_loss = fluid.layers.reduce_sum(loss)
|
|
avg_loss.backward()
|
|
optim.minimize(avg_loss)
|
|
model.clear_gradients()
|
|
|
|
|
|
def dynamic_evaluate(model, dataloader):
|
|
with fluid.dygraph.no_grad():
|
|
model.eval()
|
|
cnt = 0
|
|
for inputs, labels in dataloader:
|
|
outputs = model(inputs)
|
|
|
|
cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
|
|
labels.numpy()).astype('int').sum()
|
|
|
|
return cnt / len(dataloader.dataset)
|
|
|
|
|
|
@unittest.skipIf(not fluid.is_compiled_with_cuda(),
|
|
'CPU testing is not supported')
|
|
class TestModel(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
if not fluid.is_compiled_with_cuda():
|
|
self.skipTest('module not tested when ONLY_CPU compling')
|
|
cls.device = paddle.set_device('gpu')
|
|
fluid.enable_dygraph(cls.device)
|
|
|
|
sp_num = 1280
|
|
cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
|
|
cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
|
|
cls.test_dataset = MnistDataset(
|
|
mode='test', return_label=False, sample_num=sp_num)
|
|
|
|
cls.train_loader = fluid.io.DataLoader(
|
|
cls.train_dataset, places=cls.device, batch_size=64)
|
|
cls.val_loader = fluid.io.DataLoader(
|
|
cls.val_dataset, places=cls.device, batch_size=64)
|
|
cls.test_loader = fluid.io.DataLoader(
|
|
cls.test_dataset, places=cls.device, batch_size=64)
|
|
|
|
seed = 333
|
|
paddle.seed(seed)
|
|
paddle.framework.random._manual_program_seed(seed)
|
|
|
|
dy_lenet = LeNetDygraph()
|
|
cls.init_param = dy_lenet.state_dict()
|
|
dynamic_train(dy_lenet, cls.train_loader)
|
|
|
|
cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)
|
|
|
|
cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
|
|
cls.labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
|
|
cls.save_dir = tempfile.mkdtemp()
|
|
cls.weight_path = os.path.join(cls.save_dir, 'lenet')
|
|
fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)
|
|
|
|
fluid.disable_dygraph()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
shutil.rmtree(cls.save_dir)
|
|
|
|
def test_fit_dygraph(self):
|
|
self.fit(True)
|
|
|
|
def test_fit_static(self):
|
|
self.fit(False)
|
|
|
|
def test_fit_dynamic_with_rank(self):
|
|
self.fit(True, 2, 0)
|
|
|
|
def test_fit_static_with_rank(self):
|
|
self.fit(False, 2, 0)
|
|
|
|
def test_evaluate_dygraph(self):
|
|
self.evaluate(True)
|
|
|
|
def test_evaluate_static(self):
|
|
self.evaluate(False)
|
|
|
|
def test_predict_dygraph(self):
|
|
self.predict(True)
|
|
|
|
def test_predict_static(self):
|
|
self.predict(False)
|
|
|
|
def test_prepare_context(self):
|
|
prepare_distributed_context()
|
|
|
|
def fit(self, dynamic, num_replicas=None, rank=None):
|
|
fluid.enable_dygraph(self.device) if dynamic else None
|
|
seed = 333
|
|
paddle.seed(seed)
|
|
paddle.framework.random._manual_program_seed(seed)
|
|
|
|
net = LeNet()
|
|
optim_new = fluid.optimizer.Adam(
|
|
learning_rate=0.001, parameter_list=net.parameters())
|
|
model = Model(net, inputs=self.inputs, labels=self.labels)
|
|
model.prepare(
|
|
optim_new,
|
|
loss=CrossEntropyLoss(reduction="sum"),
|
|
metrics=Accuracy())
|
|
model.fit(self.train_dataset, batch_size=64, shuffle=False)
|
|
|
|
result = model.evaluate(self.val_dataset, batch_size=64)
|
|
np.testing.assert_allclose(result['acc'], self.acc1)
|
|
|
|
train_sampler = DistributedBatchSampler(
|
|
self.train_dataset,
|
|
batch_size=64,
|
|
shuffle=False,
|
|
num_replicas=num_replicas,
|
|
rank=rank)
|
|
val_sampler = DistributedBatchSampler(
|
|
self.val_dataset,
|
|
batch_size=64,
|
|
shuffle=False,
|
|
num_replicas=num_replicas,
|
|
rank=rank)
|
|
|
|
train_loader = fluid.io.DataLoader(
|
|
self.train_dataset,
|
|
batch_sampler=train_sampler,
|
|
places=self.device,
|
|
return_list=True)
|
|
|
|
val_loader = fluid.io.DataLoader(
|
|
self.val_dataset,
|
|
batch_sampler=val_sampler,
|
|
places=self.device,
|
|
return_list=True)
|
|
|
|
model.fit(train_loader, val_loader)
|
|
fluid.disable_dygraph() if dynamic else None
|
|
|
|
def evaluate(self, dynamic):
|
|
fluid.enable_dygraph(self.device) if dynamic else None
|
|
model = Model(LeNet(), self.inputs, self.labels)
|
|
model.prepare(metrics=Accuracy())
|
|
model.load(self.weight_path)
|
|
result = model.evaluate(self.val_dataset, batch_size=64)
|
|
np.testing.assert_allclose(result['acc'], self.acc1)
|
|
|
|
sampler = DistributedBatchSampler(
|
|
self.val_dataset, batch_size=64, shuffle=False)
|
|
|
|
val_loader = fluid.io.DataLoader(
|
|
self.val_dataset,
|
|
batch_sampler=sampler,
|
|
places=self.device,
|
|
return_list=True)
|
|
|
|
model.evaluate(val_loader)
|
|
|
|
fluid.disable_dygraph() if dynamic else None
|
|
|
|
def predict(self, dynamic):
|
|
fluid.enable_dygraph(self.device) if dynamic else None
|
|
model = Model(LeNet(), self.inputs)
|
|
model.prepare()
|
|
model.load(self.weight_path)
|
|
output = model.predict(
|
|
self.test_dataset, batch_size=64, stack_outputs=True)
|
|
np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
|
|
|
|
acc = compute_acc(output[0], self.val_dataset.labels)
|
|
np.testing.assert_allclose(acc, self.acc1)
|
|
|
|
sampler = DistributedBatchSampler(
|
|
self.test_dataset, batch_size=64, shuffle=False)
|
|
|
|
test_loader = fluid.io.DataLoader(
|
|
self.test_dataset,
|
|
batch_sampler=sampler,
|
|
places=self.device,
|
|
return_list=True)
|
|
|
|
model.evaluate(test_loader)
|
|
|
|
fluid.disable_dygraph() if dynamic else None
|
|
|
|
def test_predict_without_inputs(self):
|
|
fluid.enable_dygraph(self.device)
|
|
model = Model(LeNet())
|
|
model.prepare()
|
|
model.load(self.weight_path)
|
|
model._inputs = None
|
|
output = model.predict(
|
|
self.test_dataset, batch_size=64, stack_outputs=True)
|
|
np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
|
|
fluid.disable_dygraph()
|
|
|
|
|
|
class MyModel(paddle.nn.Layer):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
self._fc = Linear(20, 10)
|
|
|
|
def forward(self, x):
|
|
y = self._fc(x)
|
|
return y
|
|
|
|
|
|
class MyDataset(Dataset):
|
|
def __getitem__(self, idx):
|
|
return np.random.random(size=(20,)).astype(np.float32), \
|
|
np.random.randint(0, 10, size=(1,)).astype(np.int64)
|
|
|
|
def __len__(self):
|
|
return 40
|
|
|
|
|
|
class TestModelFunction(unittest.TestCase):
|
|
def set_seed(self, seed=1024):
|
|
paddle.seed(seed)
|
|
paddle.framework.random._manual_program_seed(seed)
|
|
|
|
def test_train_batch(self, dynamic=True):
|
|
dim = 20
|
|
data = np.random.random(size=(4, dim)).astype(np.float32)
|
|
label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
|
|
|
|
def get_expect():
|
|
fluid.enable_dygraph(fluid.CPUPlace())
|
|
self.set_seed()
|
|
m = MyModel()
|
|
optim = fluid.optimizer.SGD(learning_rate=0.001,
|
|
parameter_list=m.parameters())
|
|
m.train()
|
|
output = m(to_tensor(data))
|
|
loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
|
|
avg_loss = fluid.layers.reduce_sum(loss)
|
|
avg_loss.backward()
|
|
optim.minimize(avg_loss)
|
|
m.clear_gradients()
|
|
fluid.disable_dygraph()
|
|
return avg_loss.numpy()
|
|
|
|
ref = get_expect()
|
|
for dynamic in [True, False]:
|
|
device = paddle.set_device('cpu')
|
|
fluid.enable_dygraph(device) if dynamic else None
|
|
self.set_seed()
|
|
|
|
net = MyModel()
|
|
optim2 = fluid.optimizer.SGD(learning_rate=0.001,
|
|
parameter_list=net.parameters())
|
|
|
|
inputs = [InputSpec([None, dim], 'float32', 'x')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
model = Model(net, inputs, labels)
|
|
model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
|
|
loss, = model.train_batch([data], [label])
|
|
np.testing.assert_allclose(loss.flatten(), ref.flatten())
|
|
fluid.disable_dygraph() if dynamic else None
|
|
|
|
def test_test_batch(self):
|
|
dim = 20
|
|
data = np.random.random(size=(4, dim)).astype(np.float32)
|
|
|
|
def get_expect():
|
|
fluid.enable_dygraph(fluid.CPUPlace())
|
|
self.set_seed()
|
|
m = MyModel()
|
|
m.eval()
|
|
output = m(to_tensor(data))
|
|
fluid.disable_dygraph()
|
|
return output.numpy()
|
|
|
|
ref = get_expect()
|
|
for dynamic in [True, False]:
|
|
device = paddle.set_device('cpu')
|
|
fluid.enable_dygraph(device) if dynamic else None
|
|
self.set_seed()
|
|
net = MyModel()
|
|
inputs = [InputSpec([None, dim], 'float32', 'x')]
|
|
model = Model(net, inputs)
|
|
model.prepare()
|
|
out, = model.predict_batch([data])
|
|
|
|
np.testing.assert_allclose(out, ref, rtol=1e-6)
|
|
fluid.disable_dygraph() if dynamic else None
|
|
|
|
def test_save_load(self):
|
|
path = tempfile.mkdtemp()
|
|
for dynamic in [True, False]:
|
|
device = paddle.set_device('cpu')
|
|
fluid.enable_dygraph(device) if dynamic else None
|
|
net = MyModel()
|
|
inputs = [InputSpec([None, 20], 'float32', 'x')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
optim = fluid.optimizer.SGD(learning_rate=0.001,
|
|
parameter_list=net.parameters())
|
|
model = Model(net, inputs, labels)
|
|
model.prepare(
|
|
optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
|
|
model.save(path + '/test')
|
|
model.load(path + '/test')
|
|
shutil.rmtree(path)
|
|
fluid.disable_dygraph() if dynamic else None
|
|
|
|
def test_dynamic_load(self):
|
|
mnist_data = MnistDataset(mode='train')
|
|
for new_optimizer in [True, False]:
|
|
path = tempfile.mkdtemp()
|
|
paddle.disable_static()
|
|
net = LeNet()
|
|
inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
if new_optimizer:
|
|
optim = paddle.optimizer.Adam(
|
|
learning_rate=0.001, parameters=net.parameters())
|
|
else:
|
|
optim = fluid.optimizer.Adam(
|
|
learning_rate=0.001, parameter_list=net.parameters())
|
|
model = Model(net, inputs, labels)
|
|
model.prepare(
|
|
optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
|
|
model.fit(mnist_data, batch_size=64, verbose=0)
|
|
model.save(path + '/test')
|
|
model.load(path + '/test')
|
|
shutil.rmtree(path)
|
|
paddle.enable_static()
|
|
|
|
def test_dynamic_save_static_load(self):
|
|
path = tempfile.mkdtemp()
|
|
# dynamic saving
|
|
device = paddle.set_device('cpu')
|
|
fluid.enable_dygraph(device)
|
|
model = Model(MyModel())
|
|
optim = fluid.optimizer.SGD(learning_rate=0.001,
|
|
parameter_list=model.parameters())
|
|
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
|
|
model.save(path + '/test')
|
|
fluid.disable_dygraph()
|
|
|
|
inputs = [InputSpec([None, 20], 'float32', 'x')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
model = Model(MyModel(), inputs, labels)
|
|
optim = fluid.optimizer.SGD(learning_rate=0.001,
|
|
parameter_list=model.parameters())
|
|
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
|
|
model.load(path + '/test')
|
|
shutil.rmtree(path)
|
|
|
|
def test_static_save_dynamic_load(self):
|
|
path = tempfile.mkdtemp()
|
|
|
|
net = MyModel()
|
|
inputs = [InputSpec([None, 20], 'float32', 'x')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
optim = fluid.optimizer.SGD(learning_rate=0.001,
|
|
parameter_list=net.parameters())
|
|
model = Model(net, inputs, labels)
|
|
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
|
|
model.save(path + '/test')
|
|
|
|
device = paddle.set_device('cpu')
|
|
fluid.enable_dygraph(device) #if dynamic else None
|
|
|
|
net = MyModel()
|
|
inputs = [InputSpec([None, 20], 'float32', 'x')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
optim = fluid.optimizer.SGD(learning_rate=0.001,
|
|
parameter_list=net.parameters())
|
|
model = Model(net, inputs, labels)
|
|
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
|
|
model.load(path + '/test')
|
|
shutil.rmtree(path)
|
|
fluid.disable_dygraph()
|
|
|
|
def test_parameters(self):
|
|
for dynamic in [True, False]:
|
|
device = paddle.set_device('cpu')
|
|
fluid.enable_dygraph(device) if dynamic else None
|
|
net = MyModel()
|
|
inputs = [InputSpec([None, 20], 'float32', 'x')]
|
|
model = Model(net, inputs)
|
|
model.prepare()
|
|
params = model.parameters()
|
|
self.assertTrue(params[0].shape[0] == 20)
|
|
self.assertTrue(params[0].shape[1] == 10)
|
|
fluid.disable_dygraph() if dynamic else None
|
|
|
|
def test_summary(self):
|
|
def _get_param_from_state_dict(state_dict):
|
|
params = 0
|
|
for k, v in state_dict.items():
|
|
params += np.prod(v.numpy().shape)
|
|
return params
|
|
|
|
for dynamic in [True, False]:
|
|
device = paddle.set_device('cpu')
|
|
fluid.enable_dygraph(device) if dynamic else None
|
|
net = MyModel()
|
|
inputs = [InputSpec([None, 20], 'float32', 'x')]
|
|
model = Model(net, inputs)
|
|
model.prepare()
|
|
params_info = model.summary()
|
|
gt_params = _get_param_from_state_dict(net.state_dict())
|
|
|
|
np.testing.assert_allclose(params_info['total_params'], gt_params)
|
|
print(params_info)
|
|
|
|
model.summary(input_size=(20))
|
|
model.summary(input_size=[(20)])
|
|
model.summary(input_size=(20), dtype='float32')
|
|
|
|
def test_summary_nlp(self):
|
|
paddle.enable_static()
|
|
nlp_net = paddle.nn.GRU(input_size=2,
|
|
hidden_size=3,
|
|
num_layers=3,
|
|
direction="bidirectional")
|
|
paddle.summary(nlp_net, (1, 1, 2))
|
|
rnn = paddle.nn.LSTM(16, 32, 2)
|
|
paddle.summary(rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
|
|
|
|
def test_summary_dtype(self):
|
|
input_shape = (3, 1)
|
|
net = paddle.nn.Embedding(10, 3, sparse=True)
|
|
paddle.summary(net, input_shape, dtypes='int64')
|
|
|
|
def test_summary_error(self):
|
|
with self.assertRaises(TypeError):
|
|
nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
|
|
paddle.summary(nlp_net, (1, 1, '2'))
|
|
|
|
with self.assertRaises(ValueError):
|
|
nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
|
|
paddle.summary(nlp_net, (-1, -1))
|
|
|
|
paddle.disable_static()
|
|
nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
|
|
paddle.summary(nlp_net, (1, 1, 2))
|
|
|
|
def test_export_deploy_model(self):
|
|
self.set_seed()
|
|
np.random.seed(201)
|
|
for dynamic in [True, False]:
|
|
paddle.disable_static() if dynamic else None
|
|
prog_translator = ProgramTranslator()
|
|
prog_translator.enable(False) if not dynamic else None
|
|
net = LeNet()
|
|
inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
|
|
model = Model(net, inputs)
|
|
model.prepare()
|
|
save_dir = tempfile.mkdtemp()
|
|
if not os.path.exists(save_dir):
|
|
os.makedirs(save_dir)
|
|
tensor_img = np.array(
|
|
np.random.random((1, 1, 28, 28)), dtype=np.float32)
|
|
|
|
model.save(save_dir, training=False)
|
|
ori_results = model.predict_batch(tensor_img)
|
|
fluid.disable_dygraph() if dynamic else None
|
|
|
|
place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
|
|
) else fluid.CUDAPlace(0)
|
|
new_scope = fluid.Scope()
|
|
with fluid.scope_guard(new_scope):
|
|
exe = fluid.Executor(place)
|
|
[inference_program, feed_target_names, fetch_targets] = (
|
|
fluid.io.load_inference_model(
|
|
dirname=save_dir, executor=exe))
|
|
results = exe.run(inference_program,
|
|
feed={feed_target_names[0]: tensor_img},
|
|
fetch_list=fetch_targets)
|
|
np.testing.assert_allclose(
|
|
results, ori_results, rtol=1e-5, atol=1e-7)
|
|
shutil.rmtree(save_dir)
|
|
paddle.enable_static()
|
|
|
|
def test_dygraph_export_deploy_model_about_inputs(self):
|
|
mnist_data = MnistDataset(mode='train')
|
|
paddle.disable_static()
|
|
# without inputs
|
|
for initial in ["fit", "train_batch", "eval_batch", "predict_batch"]:
|
|
save_dir = tempfile.mkdtemp()
|
|
if not os.path.exists(save_dir):
|
|
os.makedirs(save_dir)
|
|
net = LeNet()
|
|
model = Model(net)
|
|
optim = fluid.optimizer.Adam(
|
|
learning_rate=0.001, parameter_list=model.parameters())
|
|
model.prepare(
|
|
optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
|
|
if initial == "fit":
|
|
model.fit(mnist_data, batch_size=64, verbose=0)
|
|
else:
|
|
img = np.array(
|
|
np.random.random((1, 1, 28, 28)), dtype=np.float32)
|
|
label = np.array(np.random.rand(1, 1), dtype=np.int64)
|
|
if initial == "train_batch":
|
|
model.train_batch([img], [label])
|
|
elif initial == "eval_batch":
|
|
model.eval_batch([img], [label])
|
|
else:
|
|
model.predict_batch([img])
|
|
|
|
model.save(save_dir, training=False)
|
|
shutil.rmtree(save_dir)
|
|
# with inputs, and the type of inputs is InputSpec
|
|
save_dir = tempfile.mkdtemp()
|
|
if not os.path.exists(save_dir):
|
|
os.makedirs(save_dir)
|
|
net = LeNet()
|
|
inputs = InputSpec([None, 1, 28, 28], 'float32', 'x')
|
|
model = Model(net, inputs)
|
|
optim = fluid.optimizer.Adam(
|
|
learning_rate=0.001, parameter_list=model.parameters())
|
|
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
|
|
model.save(save_dir, training=False)
|
|
shutil.rmtree(save_dir)
|
|
|
|
|
|
class TestModelWithLRScheduler(unittest.TestCase):
|
|
def test_fit(self):
|
|
def make_optimizer(parameters=None):
|
|
base_lr = 1e-3
|
|
momentum = 0.9
|
|
weight_decay = 5e-4
|
|
boundaries = [5, 8]
|
|
values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
|
|
learning_rate = paddle.optimizer.lr.PiecewiseDecay(
|
|
boundaries=boundaries, values=values)
|
|
learning_rate = paddle.optimizer.lr.LinearWarmup(
|
|
learning_rate=learning_rate,
|
|
warmup_steps=4,
|
|
start_lr=base_lr / 5.,
|
|
end_lr=base_lr,
|
|
verbose=True)
|
|
optimizer = paddle.optimizer.Momentum(
|
|
learning_rate=learning_rate,
|
|
weight_decay=weight_decay,
|
|
momentum=momentum,
|
|
parameters=parameters)
|
|
return optimizer
|
|
|
|
# dynamic test
|
|
device = paddle.set_device('cpu')
|
|
fluid.enable_dygraph(device)
|
|
net = MyModel()
|
|
inputs = [InputSpec([None, 20], 'float32', 'x')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
optim = make_optimizer(net.parameters())
|
|
model = Model(net, inputs, labels)
|
|
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
|
|
|
|
dataset = MyDataset()
|
|
model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)
|
|
|
|
# static test
|
|
paddle.enable_static()
|
|
|
|
net = MyModel()
|
|
inputs = [InputSpec([None, 20], 'float32', 'x')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
optim = make_optimizer(net.parameters())
|
|
model = Model(net, inputs, labels)
|
|
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
|
|
|
|
dataset = MyDataset()
|
|
model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)
|
|
|
|
|
|
class TestRaiseError(unittest.TestCase):
|
|
def test_input_without_name(self):
|
|
net = MyModel()
|
|
|
|
inputs = [InputSpec([None, 10], 'float32')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
with self.assertRaises(ValueError):
|
|
model = Model(net, inputs, labels)
|
|
|
|
def test_static_without_inputs(self):
|
|
paddle.enable_static()
|
|
net = MyModel()
|
|
with self.assertRaises(TypeError):
|
|
model = Model(net)
|
|
|
|
def test_save_infer_model_without_inputs_and_run_in_dygraph(self):
|
|
paddle.disable_static()
|
|
net = MyModel()
|
|
save_dir = tempfile.mkdtemp()
|
|
if not os.path.exists(save_dir):
|
|
os.makedirs(save_dir)
|
|
with self.assertRaises(RuntimeError):
|
|
model = Model(net)
|
|
model.save(save_dir, training=False)
|
|
paddle.enable_static()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|