You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
85 lines
2.4 KiB
85 lines
2.4 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
|
|
import paddle
|
|
from paddle.static import InputSpec
|
|
import paddle.vision.models as models
|
|
|
|
|
|
class TestVisonModels(unittest.TestCase):
|
|
def models_infer(self, arch, pretrained=False, batch_norm=False):
|
|
|
|
x = np.array(np.random.random((2, 3, 224, 224)), dtype=np.float32)
|
|
if batch_norm:
|
|
net = models.__dict__[arch](pretrained=pretrained, batch_norm=True)
|
|
else:
|
|
net = models.__dict__[arch](pretrained=pretrained)
|
|
|
|
input = InputSpec([None, 3, 224, 224], 'float32', 'image')
|
|
model = paddle.Model(net, input)
|
|
model.prepare()
|
|
|
|
model.predict_batch(x)
|
|
|
|
def test_mobilenetv2_pretrained(self):
|
|
self.models_infer('mobilenet_v2', pretrained=False)
|
|
|
|
def test_mobilenetv1(self):
|
|
self.models_infer('mobilenet_v1')
|
|
|
|
def test_vgg11(self):
|
|
self.models_infer('vgg11')
|
|
|
|
def test_vgg13(self):
|
|
self.models_infer('vgg13')
|
|
|
|
def test_vgg16(self):
|
|
self.models_infer('vgg16')
|
|
|
|
def test_vgg16_bn(self):
|
|
self.models_infer('vgg16', batch_norm=True)
|
|
|
|
def test_vgg19(self):
|
|
self.models_infer('vgg19')
|
|
|
|
def test_resnet18(self):
|
|
self.models_infer('resnet18')
|
|
|
|
def test_resnet34(self):
|
|
self.models_infer('resnet34')
|
|
|
|
def test_resnet50(self):
|
|
self.models_infer('resnet50')
|
|
|
|
def test_resnet101(self):
|
|
self.models_infer('resnet101')
|
|
|
|
def test_resnet152(self):
|
|
self.models_infer('resnet152')
|
|
|
|
def test_lenet(self):
|
|
input = InputSpec([None, 1, 28, 28], 'float32', 'x')
|
|
lenet = paddle.Model(models.__dict__['LeNet'](), input)
|
|
lenet.prepare()
|
|
|
|
x = np.array(np.random.random((2, 1, 28, 28)), dtype=np.float32)
|
|
lenet.predict_batch(x)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|