You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/tests/test_vision_models.py

85 lines
2.4 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from paddle.static import InputSpec
import paddle.vision.models as models
class TestVisonModels(unittest.TestCase):
def models_infer(self, arch, pretrained=False, batch_norm=False):
x = np.array(np.random.random((2, 3, 224, 224)), dtype=np.float32)
if batch_norm:
net = models.__dict__[arch](pretrained=pretrained, batch_norm=True)
else:
net = models.__dict__[arch](pretrained=pretrained)
input = InputSpec([None, 3, 224, 224], 'float32', 'image')
model = paddle.Model(net, input)
model.prepare()
model.predict_batch(x)
def test_mobilenetv2_pretrained(self):
self.models_infer('mobilenet_v2', pretrained=False)
def test_mobilenetv1(self):
self.models_infer('mobilenet_v1')
def test_vgg11(self):
self.models_infer('vgg11')
def test_vgg13(self):
self.models_infer('vgg13')
def test_vgg16(self):
self.models_infer('vgg16')
def test_vgg16_bn(self):
self.models_infer('vgg16', batch_norm=True)
def test_vgg19(self):
self.models_infer('vgg19')
def test_resnet18(self):
self.models_infer('resnet18')
def test_resnet34(self):
self.models_infer('resnet34')
def test_resnet50(self):
self.models_infer('resnet50')
def test_resnet101(self):
self.models_infer('resnet101')
def test_resnet152(self):
self.models_infer('resnet152')
def test_lenet(self):
input = InputSpec([None, 1, 28, 28], 'float32', 'x')
lenet = paddle.Model(models.__dict__['LeNet'](), input)
lenet.prepare()
x = np.array(np.random.random((2, 1, 28, 28)), dtype=np.float32)
lenet.predict_batch(x)
if __name__ == '__main__':
unittest.main()