You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/vision/datasets/voc2012.py

166 lines
5.4 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import io
import tarfile
import numpy as np
from PIL import Image
import paddle
from paddle.io import Dataset
from paddle.dataset.common import _check_exists_and_download
__all__ = ["VOC2012"]
VOC_URL = 'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/\
VOCtrainval_11-May-2012.tar'
VOC_MD5 = '6cd6e144f989b92b3379bac3b3de84fd'
SET_FILE = 'VOCdevkit/VOC2012/ImageSets/Segmentation/{}.txt'
DATA_FILE = 'VOCdevkit/VOC2012/JPEGImages/{}.jpg'
LABEL_FILE = 'VOCdevkit/VOC2012/SegmentationClass/{}.png'
CACHE_DIR = 'voc2012'
MODE_FLAG_MAP = {'train': 'trainval', 'test': 'train', 'valid': "val"}
class VOC2012(Dataset):
"""
Implementation of `VOC2012 <http://host.robots.ox.ac.uk/pascal/VOC/voc2012/>`_ dataset
Args:
data_file(str): path to data file, can be set None if
:attr:`download` is True. Default None
mode(str): 'train', 'valid' or 'test' mode. Default 'train'.
download(bool): whether to download dataset automatically if
:attr:`data_file` is not set. Default True
backend(str, optional): Specifies which type of image to be returned:
PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
default backend is 'pil'. Default: None.
Examples:
.. code-block:: python
import paddle
from paddle.vision.datasets import VOC2012
from paddle.vision.transforms import Normalize
class SimpleNet(paddle.nn.Layer):
def __init__(self):
super(SimpleNet, self).__init__()
def forward(self, image, label):
return paddle.sum(image), label
paddle.disable_static()
normalize = Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
data_format='HWC')
voc2012 = VOC2012(mode='train', transform=normalize, backend='cv2')
for i in range(10):
image, label= voc2012[i]
image = paddle.cast(paddle.to_tensor(image), 'float32')
label = paddle.to_tensor(label)
model = SimpleNet()
image, label= model(image, label)
print(image.numpy().shape, label.numpy().shape)
"""
def __init__(self,
data_file=None,
mode='train',
transform=None,
download=True,
backend=None):
assert mode.lower() in ['train', 'valid', 'test'], \
"mode should be 'train', 'valid' or 'test', but got {}".format(mode)
if backend is None:
backend = paddle.vision.get_image_backend()
if backend not in ['pil', 'cv2']:
raise ValueError(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.format(backend))
self.backend = backend
self.flag = MODE_FLAG_MAP[mode.lower()]
self.data_file = data_file
if self.data_file is None:
assert download, "data_file is not set and downloading automatically is disabled"
self.data_file = _check_exists_and_download(
data_file, VOC_URL, VOC_MD5, CACHE_DIR, download)
self.transform = transform
# read dataset into memory
self._load_anno()
self.dtype = paddle.get_default_dtype()
def _load_anno(self):
self.name2mem = {}
self.data_tar = tarfile.open(self.data_file)
for ele in self.data_tar.getmembers():
self.name2mem[ele.name] = ele
set_file = SET_FILE.format(self.flag)
sets = self.data_tar.extractfile(self.name2mem[set_file])
self.data = []
self.labels = []
for line in sets:
line = line.strip()
data = DATA_FILE.format(line.decode('utf-8'))
label = LABEL_FILE.format(line.decode('utf-8'))
self.data.append(data)
self.labels.append(label)
def __getitem__(self, idx):
data_file = self.data[idx]
label_file = self.labels[idx]
data = self.data_tar.extractfile(self.name2mem[data_file]).read()
label = self.data_tar.extractfile(self.name2mem[label_file]).read()
data = Image.open(io.BytesIO(data))
label = Image.open(io.BytesIO(label))
if self.backend == 'cv2':
data = np.array(data)
label = np.array(label)
if self.transform is not None:
data = self.transform(data)
if self.backend == 'cv2':
return data.astype(self.dtype), label.astype(self.dtype)
return data, label
def __len__(self):
return len(self.data)
def __del__(self):
if self.data_tar:
self.data_tar.close()