You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/all_reduce.cc

198 lines
7.5 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_NCCL
#include "paddle/fluid/imperative/all_reduce.h"
#include <string>
#include <utility>
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/nccl_helper.h"
#include "paddle/fluid/string/string_helper.h"
namespace paddle {
namespace imperative {
static void AllReduce(const framework::Tensor &src, framework::Tensor *dst,
const ParallelStrategy &strategy, cudaStream_t stream) {
const auto &place = src.place();
PADDLE_ENFORCE_EQ(
platform::is_gpu_place(place), true,
platform::errors::Unimplemented(
"Imperative mode does not support multi-CPU training yet."));
const void *src_ptr = src.data<void>();
dst->Resize(src.dims());
auto *dst_ptr = dst->mutable_data(src.place(), src.type());
auto nccl_dtype = platform::ToNCCLDataType(src.type());
auto comm = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place))
->nccl_comm();
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
src_ptr, dst_ptr, src.numel(), nccl_dtype, ncclSum, comm, stream));
}
#if NCCL_VERSION_CODE >= 2212
static void AllReduce(const framework::SelectedRows &src,
framework::SelectedRows *dst,
const ParallelStrategy &strategy, cudaStream_t stream) {
VLOG(3) << "SelectedRows AllReduce start";
const auto &src_tensor = src.value();
const auto &place = src_tensor.place();
PADDLE_ENFORCE_EQ(
platform::is_gpu_place(place), true,
platform::errors::Unimplemented(
"Imperative mode does not support multi-CPU training yet."));
auto dtype = src_tensor.type();
auto nccl_dtype = platform::ToNCCLDataType(dtype);
auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place));
auto comm = dev_ctx->nccl_comm();
// 1. Gather rows number from all workers. Here use ncclAllGather to do this,
// but we can use other ways to implement is in the future
const auto &src_rows = src.rows();
framework::Vector<int64_t> rows_num_vector(strategy.nranks_);
rows_num_vector[strategy.local_rank_] = static_cast<int64_t>(src_rows.size());
auto *gpu_rows_num_ptr = rows_num_vector.CUDAMutableData(place);
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllGather(
gpu_rows_num_ptr + strategy.local_rank_, gpu_rows_num_ptr, 1, ncclInt64,
comm, stream));
if (stream != dev_ctx->stream()) {
PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream));
}
const auto *cpu_rows_num_ptr = rows_num_vector.data();
auto rows_num =
std::accumulate(cpu_rows_num_ptr, cpu_rows_num_ptr + strategy.nranks_,
static_cast<int64_t>(0));
dst->set_height(src.height());
VLOG(3) << "Gather rows: " << string::join_strings(rows_num_vector, ',')
<< ", total rows number: " << rows_num
<< ", height: " << src.height();
auto *dst_rows = dst->mutable_rows();
dst_rows->resize(rows_num);
auto *dst_rows_ptr = dst_rows->CUDAMutableData(place);
const auto *src_rows_ptr = src_rows.CUDAData(place);
auto *dst_tensor = dst->mutable_value();
auto dims = src_tensor.dims();
dims[0] = rows_num;
auto feature_size = framework::product(dims) / dims[0];
dst_tensor->Resize(dims);
auto *dst_tensor_ptr = dst_tensor->mutable_data(place, dtype);
const auto *src_tensor_ptr = src_tensor.data<void>();
auto sizeof_dtype = framework::SizeOfType(dtype);
int64_t row_offset = 0;
for (int i = 0; i < strategy.nranks_; ++i) {
if (cpu_rows_num_ptr[i] > 0) {
// 2. Broadcast the rows of SelectedRows
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclBroadcast(
src_rows_ptr, dst_rows_ptr + row_offset, cpu_rows_num_ptr[i],
ncclInt64, i, comm, stream));
// 3. Broadcast the tensor data of SelectedRows
auto *dst_tensor_ptr_i = reinterpret_cast<uint8_t *>(dst_tensor_ptr) +
row_offset * feature_size * sizeof_dtype;
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclBroadcast(
src_tensor_ptr, dst_tensor_ptr_i, cpu_rows_num_ptr[i] * feature_size,
nccl_dtype, i, comm, stream));
row_offset += cpu_rows_num_ptr[i];
}
}
VLOG(3) << "Original SelectedRows rows: "
<< string::join_strings(src_rows, ',');
VLOG(3) << "Result SelectedRows rows: "
<< string::join_strings(*dst_rows, ',');
}
#endif
void AllReduce(const framework::Variable &src, framework::Variable *dst,
const ParallelStrategy &strategy, cudaStream_t stream) {
if (src.IsType<framework::LoDTensor>()) {
if (!dst->IsType<framework::LoDTensor>()) {
dst->Clear();
}
AllReduce(src.Get<framework::LoDTensor>(),
dst->GetMutable<framework::LoDTensor>(), strategy, stream);
#if NCCL_VERSION_CODE >= 2212
} else if (src.IsType<framework::SelectedRows>()) {
if (&src != dst) {
if (!dst->IsType<framework::SelectedRows>()) {
dst->Clear();
}
AllReduce(src.Get<framework::SelectedRows>(),
dst->GetMutable<framework::SelectedRows>(), strategy, stream);
} else {
// SelectedRows cannot be allreduce in-place
framework::Variable tmp_dst;
AllReduce(src.Get<framework::SelectedRows>(),
tmp_dst.GetMutable<framework::SelectedRows>(), strategy,
stream);
*dst = std::move(tmp_dst);
}
#endif
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Unsupported variable type %s for imperative allreduce, only "
"LoDTensor and SelectedRows are supported.",
platform::demangle(framework::ToTypeName(src.Type()))));
}
}
static const platform::Place &GetVarPlace(const framework::Variable &src) {
if (src.IsType<framework::LoDTensor>()) {
return src.Get<framework::LoDTensor>().place();
#if NCCL_VERSION_CODE >= 2212
} else if (src.IsType<framework::SelectedRows>()) {
return src.Get<framework::SelectedRows>().value().place();
#endif
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Cannot get unsupported variable type %s for imperative allreduce, "
"only "
"LoDTensor and SelectedRows are supported.",
platform::demangle(framework::ToTypeName(src.Type()))));
}
}
void AllReduce(const framework::Variable &src, framework::Variable *dst,
const ParallelStrategy &strategy) {
const auto &place = GetVarPlace(src);
PADDLE_ENFORCE_EQ(
platform::is_gpu_place(place), true,
platform::errors::Unimplemented(
"Imperative mode does not support multi-CPU training yet."));
auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place));
auto stream = dev_ctx->stream();
AllReduce(src, dst, strategy, stream);
}
} // namespace imperative
} // namespace paddle
#endif