You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
532 lines
23 KiB
532 lines
23 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/memory/memory.h"
|
|
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
|
|
#include "paddle/fluid/operators/conv_op.h"
|
|
#include "paddle/fluid/platform/assert.h"
|
|
#include "paddle/fluid/platform/cudnn_helper.h"
|
|
#include "paddle/fluid/platform/float16.h"
|
|
#include "paddle/fluid/platform/profiler.h"
|
|
|
|
DEFINE_bool(cudnn_deterministic, false,
|
|
"Whether allow using an autotuning algorithm for convolution "
|
|
"operator. The autotuning algorithm may be non-deterministic. If "
|
|
"true, the algorithm is deterministic.");
|
|
DEFINE_uint64(conv_workspace_size_limit, 4096,
|
|
"cuDNN convolution workspace limit in MB unit.");
|
|
DEFINE_bool(cudnn_exhaustive_search, false,
|
|
"Whether enable exhaustive search for cuDNN convolution or "
|
|
"not, defalut is False.");
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
|
|
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
|
|
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
|
|
using DataLayout = platform::DataLayout;
|
|
template <typename T>
|
|
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
|
|
using framework::AlgorithmsCache;
|
|
|
|
template <typename T>
|
|
class CUDNNConvOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"It must use CUDAPlace.");
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto* filter = ctx.Input<Tensor>("Filter");
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
|
|
int groups = ctx.Attr<int>("groups");
|
|
int64_t user_workspace_size =
|
|
static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
|
|
bool exhaustive_search =
|
|
FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* filter_data = filter->data<T>();
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
|
|
// ------------------- cudnn descriptors ---------------------
|
|
ScopedTensorDescriptor input_desc;
|
|
ScopedTensorDescriptor output_desc;
|
|
ScopedFilterDescriptor filter_desc;
|
|
ScopedConvolutionDescriptor conv_desc;
|
|
DataLayout layout = DataLayout::kNCHW;
|
|
if (input->dims().size() == 5) {
|
|
layout = DataLayout::kNCDHW;
|
|
}
|
|
|
|
cudnnConvolutionDescriptor_t cudnn_conv_desc =
|
|
conv_desc.descriptor<T>(paddings, strides, dilations);
|
|
|
|
#if CUDNN_VERSION_MIN(7, 0, 1)
|
|
// cudnn 7 can support groups, no need to do it mannually
|
|
// FIXME(typhoonzero): find a better way to disable groups
|
|
// rather than setting it to 1.
|
|
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
|
|
cudnn_conv_desc, groups));
|
|
groups = 1;
|
|
#endif
|
|
|
|
cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
|
|
layout, framework::vectorize2int(input->dims()), groups);
|
|
cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
|
|
layout, framework::vectorize2int(output->dims()), groups);
|
|
cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
|
|
layout, framework::vectorize2int(filter->dims()), groups);
|
|
|
|
int input_channels = input->dims()[1];
|
|
int input_height, input_width, input_depth;
|
|
if (input->dims().size() == 5) {
|
|
input_depth = input->dims()[2];
|
|
input_height = input->dims()[3];
|
|
input_width = input->dims()[4];
|
|
} else { // dim size is enforced in InferShape
|
|
input_depth = 1;
|
|
input_height = input->dims()[2];
|
|
input_width = input->dims()[3];
|
|
}
|
|
int output_channels = filter->dims()[0];
|
|
int output_height, output_width, output_depth;
|
|
if (output->dims().size() == 5) {
|
|
output_depth = output->dims()[2];
|
|
output_height = output->dims()[3];
|
|
output_width = output->dims()[4];
|
|
} else {
|
|
output_depth = 1;
|
|
output_height = output->dims()[2];
|
|
output_width = output->dims()[3];
|
|
}
|
|
|
|
int group_offset_in =
|
|
input_channels / groups * input_height * input_width * input_depth;
|
|
int group_offset_out =
|
|
output_channels / groups * output_height * output_width * output_depth;
|
|
int group_offset_filter = filter->numel() / groups;
|
|
// ------------------- cudnn conv workspace ---------------------
|
|
size_t workspace_size_in_bytes; // final workspace to allocate.
|
|
size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
|
|
if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
|
|
int64_t max_user_size =
|
|
std::max(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
|
|
user_workspace_size);
|
|
workspace_size_limit = max_user_size * 1024 * 1024;
|
|
}
|
|
|
|
// ------------------- cudnn conv algorithm ---------------------
|
|
cudnnConvolutionFwdAlgo_t algo;
|
|
auto handle = dev_ctx.cudnn_handle();
|
|
|
|
bool half_float = false;
|
|
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
|
|
// Tensor core is supported since the volta GPU and
|
|
// is only enabled when input and filter data are float16
|
|
if (dev_ctx.GetComputeCapability() >= 70 &&
|
|
std::type_index(typeid(T)) ==
|
|
std::type_index(typeid(platform::float16))) {
|
|
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
|
|
cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
|
|
// Currently tensor core is only enabled using this algo
|
|
algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
|
|
half_float = true;
|
|
VLOG(5) << "use cudnn_tensor_op_math";
|
|
} else {
|
|
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
|
|
cudnn_conv_desc, CUDNN_DEFAULT_MATH));
|
|
VLOG(5) << "NOT use cudnn_tensor_op_math";
|
|
}
|
|
#endif
|
|
Tensor cudnn_workspace;
|
|
void* cudnn_workspace_ptr = nullptr;
|
|
|
|
auto x_dims = framework::vectorize(input->dims());
|
|
auto f_dims = framework::vectorize(filter->dims());
|
|
if ((!exhaustive_search) && (!half_float)) {
|
|
CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
|
|
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
|
|
cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
|
|
workspace_size_limit, &algo));
|
|
VLOG(3) << "cuDNN forward algo " << algo;
|
|
} else if (exhaustive_search && (!half_float)) {
|
|
AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
|
|
ctx.GetKernelConfig<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>(0);
|
|
cudnn_workspace =
|
|
ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
|
|
framework::make_ddim(
|
|
{static_cast<int64_t>(workspace_size_limit)}),
|
|
dev_ctx);
|
|
cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
|
|
|
|
algo = algo_cache.GetAlgorithm(
|
|
x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
|
|
int returned_algo_count;
|
|
std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
|
|
fwd_perf_stat;
|
|
|
|
CUDNN_ENFORCE(
|
|
platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
|
|
handle, cudnn_input_desc, input_data, cudnn_filter_desc,
|
|
filter_data, cudnn_conv_desc, cudnn_output_desc,
|
|
output_data, kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
|
|
fwd_perf_stat.data(), cudnn_workspace_ptr,
|
|
workspace_size_limit));
|
|
|
|
VLOG(3) << "Perf result: (algo: stat, time, memory)";
|
|
for (int i = 0; i < returned_algo_count; ++i) {
|
|
const auto& stat = fwd_perf_stat[i];
|
|
VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
|
|
<< " " << stat.memory;
|
|
}
|
|
return fwd_perf_stat[0].algo;
|
|
});
|
|
VLOG(3) << "choose algo " << algo;
|
|
} else {
|
|
PADDLE_ENFORCE(half_float,
|
|
"cuDNN exhaustive search doesn't support half float.");
|
|
}
|
|
|
|
// get workspace size able to allocate
|
|
CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
|
|
handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
|
|
cudnn_output_desc, algo, &workspace_size_in_bytes));
|
|
// It is possible for float16 on Volta GPU to allocate more memory than
|
|
// the limit because the algo is overrided to use tensor core.
|
|
PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
|
|
"workspace_size to be allocated exceeds the limit");
|
|
|
|
// Allocate on GPU memory
|
|
if (!cudnn_workspace_ptr) {
|
|
cudnn_workspace =
|
|
ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
|
|
framework::make_ddim(
|
|
{static_cast<int64_t>(workspace_size_in_bytes)}),
|
|
dev_ctx);
|
|
cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
|
|
}
|
|
// ------------------- cudnn conv forward ---------------------
|
|
ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
|
|
for (int i = 0; i < groups; i++) {
|
|
CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
|
|
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
|
|
cudnn_filter_desc, filter_data + i * group_offset_filter,
|
|
cudnn_conv_desc, algo, cudnn_workspace_ptr, workspace_size_in_bytes,
|
|
&beta, cudnn_output_desc, output_data + i * group_offset_out));
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"It must use CUDAPlace.");
|
|
auto input = ctx.Input<Tensor>("Input");
|
|
auto filter = ctx.Input<Tensor>("Filter");
|
|
auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
|
|
auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
|
|
auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* output_grad_data = output_grad->data<T>();
|
|
const T* filter_data = filter->data<T>();
|
|
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
|
|
int groups = ctx.Attr<int>("groups");
|
|
int64_t user_workspace_size =
|
|
static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
|
|
bool exhaustive_search =
|
|
FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
|
|
if (exhaustive_search && FLAGS_cudnn_deterministic) {
|
|
PADDLE_THROW(
|
|
"Cann't set exhaustive_search True and "
|
|
"FLAGS_cudnn_deterministic True at same time.");
|
|
}
|
|
|
|
// ------------------- cudnn descriptors ---------------------
|
|
ScopedTensorDescriptor input_desc;
|
|
ScopedTensorDescriptor output_grad_desc;
|
|
|
|
ScopedFilterDescriptor filter_desc;
|
|
ScopedFilterDescriptor filter_grad_desc;
|
|
ScopedConvolutionDescriptor conv_desc;
|
|
DataLayout layout = DataLayout::kNCHW;
|
|
if (input->dims().size() == 5) {
|
|
layout = DataLayout::kNCDHW;
|
|
}
|
|
|
|
cudnnConvolutionDescriptor_t cudnn_conv_desc =
|
|
conv_desc.descriptor<T>(paddings, strides, dilations);
|
|
|
|
#if CUDNN_VERSION_MIN(7, 0, 1)
|
|
// cudnn 7 can support groups, no need to do it mannually
|
|
// FIXME(typhoonzero): find a better way to disable groups
|
|
// rather than setting it to 1.
|
|
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
|
|
cudnn_conv_desc, groups));
|
|
groups = 1;
|
|
#endif
|
|
|
|
cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
|
|
layout, framework::vectorize2int(input->dims()), groups);
|
|
cudnnTensorDescriptor_t cudnn_output_grad_desc =
|
|
output_grad_desc.descriptor<T>(
|
|
layout, framework::vectorize2int(output_grad->dims()), groups);
|
|
cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
|
|
layout, framework::vectorize2int(filter->dims()), groups);
|
|
|
|
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
|
|
// Enable Tensor Core for cudnn backward
|
|
if (dev_ctx.GetComputeCapability() >= 70 &&
|
|
std::type_index(typeid(T)) ==
|
|
std::type_index(typeid(platform::float16))) {
|
|
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
|
|
cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
|
|
VLOG(5) << "use cudnn_tensor_op_math for backward";
|
|
} else {
|
|
CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
|
|
cudnn_conv_desc, CUDNN_DEFAULT_MATH));
|
|
VLOG(5) << "NOT use cudnn_tensor_op_math for backward";
|
|
}
|
|
#endif
|
|
|
|
int input_channels = input->dims()[1];
|
|
int input_height, input_width, input_depth;
|
|
if (input->dims().size() == 5) {
|
|
input_depth = input->dims()[2];
|
|
input_height = input->dims()[3];
|
|
input_width = input->dims()[4];
|
|
} else { // dim size is enforced in InferShape
|
|
input_depth = 1;
|
|
input_height = input->dims()[2];
|
|
input_width = input->dims()[3];
|
|
}
|
|
|
|
int output_grad_channels = filter->dims()[0];
|
|
int output_grad_height, output_grad_width, output_grad_depth;
|
|
if (input->dims().size() == 5) {
|
|
output_grad_depth = output_grad->dims()[2];
|
|
output_grad_height = output_grad->dims()[3];
|
|
output_grad_width = output_grad->dims()[4];
|
|
} else {
|
|
output_grad_depth = 1;
|
|
output_grad_height = output_grad->dims()[2];
|
|
output_grad_width = output_grad->dims()[3];
|
|
}
|
|
|
|
int group_offset_in =
|
|
input_channels / groups * input_height * input_width * input_depth;
|
|
int group_offset_out = output_grad_channels / groups * output_grad_height *
|
|
output_grad_width * output_grad_depth;
|
|
int group_offset_filter = filter->numel() / groups;
|
|
// ------------------- cudnn backward algorithm ---------------------
|
|
cudnnConvolutionBwdDataAlgo_t data_algo;
|
|
cudnnConvolutionBwdFilterAlgo_t filter_algo;
|
|
size_t workspace_size_in_bytes = 0, tmp_size = 0;
|
|
size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
|
|
if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
|
|
int64_t max_user_size =
|
|
std::max(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
|
|
user_workspace_size);
|
|
workspace_size_limit = max_user_size * 1024 * 1024;
|
|
}
|
|
|
|
Tensor cudnn_workspace;
|
|
void* cudnn_workspace_ptr = nullptr;
|
|
if ((input_data || filter_data) && exhaustive_search) {
|
|
cudnn_workspace =
|
|
ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
|
|
framework::make_ddim(
|
|
{static_cast<int64_t>(workspace_size_limit)}),
|
|
dev_ctx);
|
|
cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
|
|
}
|
|
|
|
auto x_dims = framework::vectorize(input->dims());
|
|
auto f_dims = framework::vectorize(filter->dims());
|
|
auto handle = dev_ctx.cudnn_handle();
|
|
if (input_grad) {
|
|
T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
|
|
if (exhaustive_search) {
|
|
AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>& data_algo_cache =
|
|
ctx.GetKernelConfig<AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>(
|
|
0);
|
|
|
|
data_algo = data_algo_cache.GetAlgorithm(
|
|
x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
|
|
int returned_algo_count;
|
|
std::array<cudnnConvolutionBwdDataAlgoPerf_t,
|
|
kNUM_CUDNN_BWD_DATA_ALGS>
|
|
data_perf_stat;
|
|
|
|
CUDNN_ENFORCE(platform::dynload::
|
|
cudnnFindConvolutionBackwardDataAlgorithmEx(
|
|
handle, cudnn_filter_desc, filter_data,
|
|
cudnn_output_grad_desc, output_grad_data,
|
|
cudnn_conv_desc, cudnn_input_desc,
|
|
input_grad_data, kNUM_CUDNN_BWD_DATA_ALGS,
|
|
&returned_algo_count, data_perf_stat.data(),
|
|
cudnn_workspace_ptr, workspace_size_limit));
|
|
|
|
VLOG(3) << "Perf result: (algo: stat, time, memory)";
|
|
for (int i = 0; i < returned_algo_count; ++i) {
|
|
const auto& stat = data_perf_stat[i];
|
|
VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
|
|
<< " " << stat.memory;
|
|
}
|
|
return data_perf_stat[0].algo;
|
|
});
|
|
VLOG(3) << "cuDNN backward data algo " << data_algo;
|
|
} else if (FLAGS_cudnn_deterministic) {
|
|
data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
|
|
} else {
|
|
CUDNN_ENFORCE(
|
|
platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
|
|
handle, cudnn_filter_desc,
|
|
// dyDesc: Handle to the previously initialized input
|
|
// differential
|
|
// tensor descriptor.
|
|
cudnn_output_grad_desc, cudnn_conv_desc,
|
|
// dxDesc: Handle to the previously initialized output tensor
|
|
// descriptor.
|
|
cudnn_input_desc,
|
|
CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
|
|
workspace_size_limit, &data_algo));
|
|
}
|
|
CUDNN_ENFORCE(
|
|
platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
|
|
handle, cudnn_filter_desc, cudnn_output_grad_desc,
|
|
cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
|
|
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
|
|
}
|
|
|
|
if (filter_grad) {
|
|
T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
|
|
if (exhaustive_search) {
|
|
AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>& f_algo_cache =
|
|
ctx.GetKernelConfig<
|
|
AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>(1);
|
|
|
|
filter_algo = f_algo_cache.GetAlgorithm(
|
|
x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
|
|
int returned_algo_count;
|
|
std::array<cudnnConvolutionBwdFilterAlgoPerf_t,
|
|
kNUM_CUDNN_BWD_FILTER_ALGS>
|
|
filter_perf_stat;
|
|
|
|
CUDNN_ENFORCE(
|
|
platform::dynload::
|
|
cudnnFindConvolutionBackwardFilterAlgorithmEx(
|
|
handle, cudnn_input_desc, input_data,
|
|
cudnn_output_grad_desc, output_grad_data,
|
|
cudnn_conv_desc, cudnn_filter_desc, filter_grad_data,
|
|
kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
|
|
filter_perf_stat.data(), cudnn_workspace_ptr,
|
|
workspace_size_limit));
|
|
return filter_perf_stat[0].algo;
|
|
});
|
|
VLOG(3) << "cuDNN backward filter algo " << filter_algo;
|
|
} else if (FLAGS_cudnn_deterministic) {
|
|
filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
|
|
} else {
|
|
CUDNN_ENFORCE(
|
|
platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
|
|
handle, cudnn_input_desc, cudnn_output_grad_desc,
|
|
cudnn_conv_desc, cudnn_filter_desc,
|
|
CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
|
|
workspace_size_limit, &filter_algo));
|
|
}
|
|
CUDNN_ENFORCE(
|
|
platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
|
|
handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
|
|
cudnn_filter_desc, filter_algo, &tmp_size));
|
|
workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
|
|
}
|
|
|
|
// ------------------- cudnn conv workspace ---------------------
|
|
if (!cudnn_workspace_ptr) {
|
|
cudnn_workspace =
|
|
ctx.AllocateTmpTensor<int8_t, platform::CUDADeviceContext>(
|
|
framework::make_ddim(
|
|
{static_cast<int64_t>(workspace_size_in_bytes)}),
|
|
dev_ctx);
|
|
cudnn_workspace_ptr = static_cast<void*>(cudnn_workspace.data<int8_t>());
|
|
}
|
|
|
|
// ------------------- cudnn conv backward data ---------------------
|
|
ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
|
|
if (input_grad) {
|
|
T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
|
|
// Because beta is zero, it is unnecessary to reset input_grad.
|
|
|
|
for (int i = 0; i < groups; i++) {
|
|
CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
|
|
handle, &alpha, cudnn_filter_desc,
|
|
filter_data + i * group_offset_filter, cudnn_output_grad_desc,
|
|
output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
|
|
cudnn_workspace_ptr, workspace_size_in_bytes, &beta,
|
|
cudnn_input_desc, input_grad_data + i * group_offset_in));
|
|
}
|
|
}
|
|
// ------------------- cudnn conv backward filter ---------------------
|
|
if (filter_grad) {
|
|
T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
|
|
// Because beta is zero, it is unnecessary to reset filter_grad.
|
|
for (int i = 0; i < groups; i++) {
|
|
CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
|
|
handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
|
|
cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
|
|
cudnn_conv_desc, filter_algo, cudnn_workspace_ptr,
|
|
workspace_size_in_bytes, &beta, cudnn_filter_desc,
|
|
filter_grad_data + i * group_offset_filter));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace plat = paddle::platform;
|
|
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
|
|
paddle::operators::CUDNNConvOpKernel<float>,
|
|
paddle::operators::CUDNNConvOpKernel<double>,
|
|
paddle::operators::CUDNNConvOpKernel<plat::float16>);
|
|
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
|
|
paddle::operators::CUDNNConvGradOpKernel<float>,
|
|
paddle::operators::CUDNNConvGradOpKernel<double>,
|
|
paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
|
|
|
|
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
|
|
paddle::operators::CUDNNConvOpKernel<float>,
|
|
paddle::operators::CUDNNConvOpKernel<double>,
|
|
paddle::operators::CUDNNConvOpKernel<plat::float16>);
|
|
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
|
|
paddle::operators::CUDNNConvGradOpKernel<float>,
|
|
paddle::operators::CUDNNConvGradOpKernel<double>);
|