You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
301 lines
7.9 KiB
301 lines
7.9 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
/*
|
|
* This file contains the definition of a simple Inference API for Paddle.
|
|
*
|
|
* ATTENTION: It requires some C++11 features, for lower version C++ or C, we
|
|
* might release another API.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <cassert>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "paddle_analysis_config.h" // NOLINT
|
|
#include "paddle_api.h" // NOLINT
|
|
|
|
///
|
|
/// \file paddle_inference_api.h
|
|
///
|
|
/// \brief Paddle Inference API
|
|
///
|
|
/// \author paddle-infer@baidu.com
|
|
/// \date 2020-09-01
|
|
/// \since 2.0.0-beta
|
|
///
|
|
|
|
namespace paddle_infer {
|
|
using DataType = paddle::PaddleDType;
|
|
using PlaceType = paddle::PaddlePlace;
|
|
using PrecisionType = paddle::AnalysisConfig::Precision;
|
|
using Config = paddle::AnalysisConfig;
|
|
|
|
///
|
|
/// \class Tensor
|
|
///
|
|
/// \brief Represents an n-dimensional array of values.
|
|
/// The Tensor is used to store the input or output of the network.
|
|
/// It is obtained through Predictor::GetinputHandle()
|
|
/// and Predictor::GetOutputHandle() interface.
|
|
///
|
|
class PD_INFER_DECL Tensor {
|
|
public:
|
|
// Can only be created by predictor->GetInputHandle(cosnt std::string& name)
|
|
// or predictor->GetOutputHandle(cosnt std::string& name)
|
|
Tensor() = delete;
|
|
explicit Tensor(std::unique_ptr<paddle::ZeroCopyTensor>&& tensor)
|
|
: tensor_(std::move(tensor)) {}
|
|
|
|
///
|
|
/// \brief Reset the shape of the tensor.
|
|
/// Generally it's only used for the input tensor.
|
|
/// Reshape must be called before calling mutable_data() or CopyFromCpu()
|
|
/// \param shape The shape to set.
|
|
///
|
|
void Reshape(const std::vector<int>& shape);
|
|
|
|
///
|
|
/// \brief Copy the host memory to tensor data.
|
|
/// It's usually used to set the input tensor data.
|
|
/// \param data The pointer of the data, from which the tensor will copy.
|
|
///
|
|
template <typename T>
|
|
void CopyFromCpu(const T* data);
|
|
|
|
///
|
|
/// \brief Get the memory pointer in CPU or GPU with specific data type.
|
|
/// Please Reshape the tensor first before call this.
|
|
/// It's usually used to get input data pointer.
|
|
/// \param place The place of the tensor.
|
|
/// \return The tensor data buffer pointer.
|
|
///
|
|
template <typename T>
|
|
T* mutable_data(PlaceType place);
|
|
|
|
///
|
|
/// \brief Copy the tensor data to the host memory.
|
|
/// It's usually used to get the output tensor data.
|
|
/// \param[out] data The tensor will copy the data to the address.
|
|
///
|
|
template <typename T>
|
|
void CopyToCpu(T* data);
|
|
|
|
///
|
|
/// \brief Get the memory pointer directly.
|
|
/// It's usually used to get the output data pointer.
|
|
/// \param[out] place To get the device type of the tensor.
|
|
/// \param[out] size To get the data size of the tensor.
|
|
/// \return The tensor data buffer pointer.
|
|
///
|
|
template <typename T>
|
|
T* data(PlaceType* place, int* size) const;
|
|
|
|
///
|
|
/// \brief Set lod info of the tensor.
|
|
/// More about LOD can be seen here:
|
|
/// https://www.paddlepaddle.org.cn/documentation/docs/zh/beginners_guide/basic_concept/lod_tensor.html#lodtensor
|
|
/// \param x the lod info.
|
|
///
|
|
void SetLoD(const std::vector<std::vector<size_t>>& x);
|
|
|
|
/// \brief Return the lod info of the tensor.
|
|
std::vector<std::vector<size_t>> lod() const;
|
|
|
|
/// \brief Return the data type of the tensor.
|
|
/// It's usually used to get the output tensor data type.
|
|
/// \return The data type of the tensor.
|
|
DataType type() const;
|
|
|
|
/// \brief Return the shape of the Tensor.
|
|
std::vector<int> shape() const;
|
|
|
|
/// \brief Return the name of the tensor.
|
|
const std::string& name() const;
|
|
|
|
private:
|
|
std::unique_ptr<paddle::ZeroCopyTensor> tensor_;
|
|
};
|
|
|
|
///
|
|
/// \class Predictor
|
|
///
|
|
/// \brief Predictor is the interface for model prediction.
|
|
///
|
|
/// The predictor has the following typical uses:
|
|
///
|
|
/// Get predictor
|
|
/// \code{cpp}
|
|
/// auto predictor = CreatePredictor(config);
|
|
/// \endcode
|
|
///
|
|
/// Get input or output names
|
|
/// \code{cpp}
|
|
/// auto input_names = predictor->GetInputNames();
|
|
/// auto output_names = predictor->GetOutputNames();
|
|
/// \endcode
|
|
///
|
|
/// Get input or output handle
|
|
/// \code{cpp}
|
|
/// auto input_t = predictor->GetInputHandle(input_names[0]);
|
|
/// auto output_t = predictor->GetOutputHandle(output_names[0]);
|
|
/// \endcode
|
|
///
|
|
/// Run predictor
|
|
/// \code{cpp}
|
|
/// predictor->Run();
|
|
/// \endcode
|
|
///
|
|
class PD_INFER_DECL Predictor {
|
|
public:
|
|
Predictor() = delete;
|
|
~Predictor() {}
|
|
// Use for clone
|
|
explicit Predictor(std::unique_ptr<paddle::PaddlePredictor>&& pred)
|
|
: predictor_(std::move(pred)) {}
|
|
|
|
///
|
|
/// \brief Construct a new Predictor object
|
|
///
|
|
/// \param[in] Config config
|
|
///
|
|
explicit Predictor(const Config& config);
|
|
|
|
///
|
|
/// \brief Get the input names
|
|
///
|
|
/// \return input names
|
|
///
|
|
std::vector<std::string> GetInputNames();
|
|
|
|
///
|
|
/// \brief Get the Input Tensor object
|
|
///
|
|
/// \param[in] name input name
|
|
/// \return input tensor
|
|
///
|
|
std::unique_ptr<Tensor> GetInputHandle(const std::string& name);
|
|
|
|
///
|
|
/// \brief Run the prediction engine
|
|
///
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool Run();
|
|
|
|
///
|
|
/// \brief Get the output names
|
|
///
|
|
/// \return output names
|
|
///
|
|
std::vector<std::string> GetOutputNames();
|
|
|
|
///
|
|
/// \brief Get the Output Tensor object
|
|
///
|
|
/// \param[in] name otuput name
|
|
/// \return output tensor
|
|
///
|
|
std::unique_ptr<Tensor> GetOutputHandle(const std::string& name);
|
|
|
|
///
|
|
/// \brief Clone to get the new predictor. thread safe.
|
|
///
|
|
/// \return get a new predictor
|
|
///
|
|
std::unique_ptr<Predictor> Clone();
|
|
|
|
/// \brief Clear the intermediate tensors of the predictor
|
|
void ClearIntermediateTensor();
|
|
|
|
private:
|
|
std::unique_ptr<paddle::PaddlePredictor> predictor_;
|
|
};
|
|
|
|
///
|
|
/// \brief A factory to help create predictors.
|
|
///
|
|
/// Usage:
|
|
///
|
|
/// \code{.cpp}
|
|
/// Config config;
|
|
/// ... // change the configs.
|
|
/// auto predictor = CreatePredictor(config);
|
|
/// \endcode
|
|
///
|
|
PD_INFER_DECL std::shared_ptr<Predictor> CreatePredictor(
|
|
const Config& config); // NOLINT
|
|
|
|
PD_INFER_DECL int GetNumBytesOfDataType(DataType dtype);
|
|
|
|
PD_INFER_DECL std::string GetVersion();
|
|
PD_INFER_DECL std::string UpdateDllFlag(const char* name, const char* value);
|
|
|
|
template <typename T>
|
|
void Tensor::CopyFromCpu(const T* data) {
|
|
tensor_->copy_from_cpu<T>(data);
|
|
}
|
|
|
|
template <typename T>
|
|
void Tensor::CopyToCpu(T* data) {
|
|
return tensor_->copy_to_cpu<T>(data);
|
|
}
|
|
|
|
template <typename T>
|
|
T* Tensor::mutable_data(PlaceType place) {
|
|
return tensor_->mutable_data<T>(place);
|
|
}
|
|
|
|
template <typename T>
|
|
T* Tensor::data(PlaceType* place, int* size) const {
|
|
return tensor_->data<T>(place, size);
|
|
}
|
|
|
|
} // namespace paddle_infer
|
|
|
|
namespace paddle_infer {
|
|
namespace services {
|
|
|
|
///
|
|
/// \class PredictorPool
|
|
///
|
|
/// \brief PredictorPool is a simple encapsulation of Predictor, suitable for
|
|
/// use in multi-threaded situations. According to the thread id, the
|
|
/// corresponding Predictor is taken out from PredictorPool to complete the
|
|
/// prediction.
|
|
///
|
|
class PD_INFER_DECL PredictorPool {
|
|
public:
|
|
PredictorPool() = delete;
|
|
PredictorPool(const PredictorPool&) = delete;
|
|
PredictorPool& operator=(const PredictorPool&) = delete;
|
|
|
|
/// \brief Construct the predictor pool with \param size predictor instances.
|
|
explicit PredictorPool(const Config& config, size_t size = 1);
|
|
|
|
/// \brief Get \param id-th predictor.
|
|
Predictor* Retrive(size_t idx);
|
|
|
|
private:
|
|
std::shared_ptr<Predictor> main_pred_;
|
|
std::vector<std::unique_ptr<Predictor>> preds_;
|
|
};
|
|
} // namespace services
|
|
} // namespace paddle_infer
|