You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.4 KiB
83 lines
2.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/operators/math/lstm_compute.h"
|
|
#include "paddle/platform/device_context.h"
|
|
#include "paddle/platform/enforce.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
|
|
// typedef enum {
|
|
// HL_ACTIVATION_SIGMOID = 0,
|
|
// HL_ACTIVATION_RELU = 1,
|
|
// HL_ACTIVATION_TANH = 2,
|
|
// HL_ACTIVATION_LINEAR = 3,
|
|
// HL_ACTIVATION_END
|
|
// } activation_mode_t;
|
|
|
|
// inline activation_mode_t ActiveType(const std::string &type) {
|
|
// if (type == "sigmoid") {
|
|
// return HL_ACTIVATION_SIGMOID;
|
|
// } else if (type == "relu") {
|
|
// return HL_ACTIVATION_RELU;
|
|
// } else if (type == "tanh") {
|
|
// return HL_ACTIVATION_TANH;
|
|
// } else if (type == "linear" || type == "") {
|
|
// return HL_ACTIVATION_LINEAR;
|
|
// } else {
|
|
// PADDLE_THROW("Do not support activation type.");
|
|
// }
|
|
// }
|
|
|
|
template <typename T>
|
|
struct hl_gru_value {
|
|
T *gateWeight;
|
|
T *stateWeight;
|
|
T *gateValue;
|
|
T *resetOutputValue;
|
|
T *outputValue;
|
|
T *prevOutValue;
|
|
};
|
|
|
|
template <typename T>
|
|
struct hl_gru_grad {
|
|
T *gateWeightGrad;
|
|
T *stateWeightGrad;
|
|
T *gateGrad;
|
|
T *resetOutputGrad;
|
|
T *outputGrad;
|
|
T *prevOutGrad;
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
struct GRUUnitFunctor {
|
|
static void compute(const platform::DeviceContext &context,
|
|
hl_gru_value<T> value, int frameSize, int batchSize,
|
|
activation_mode_t active_node,
|
|
activation_mode_t active_gate);
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
struct GRUUnitGradFunctor {
|
|
static void compute(const platform::DeviceContext &context,
|
|
hl_gru_value<T> value, hl_gru_grad<T> grad, int frameSize,
|
|
int batchSize, activation_mode_t active_node,
|
|
activation_mode_t active_gate);
|
|
};
|
|
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|