You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
5.9 KiB
204 lines
5.9 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle
|
|
import math
|
|
|
|
|
|
class Gsz:
|
|
def __init__(self, h, w, gd, gh, gw, input_chans):
|
|
self.h = h
|
|
self.w = w
|
|
self.gd = gd
|
|
self.gh = gh
|
|
self.gw = gw
|
|
self.input_chans = input_chans
|
|
|
|
|
|
def diff_abs(x):
|
|
eps = 1e-8
|
|
return math.sqrt(x * x + eps)
|
|
|
|
|
|
def d_diff_abs(x):
|
|
eps = 1e-8
|
|
return x / math.sqrt(x * x + eps)
|
|
|
|
|
|
def weight_z(x):
|
|
abx = diff_abs(x)
|
|
return max(1.0 - abx, 0.0)
|
|
|
|
|
|
def d_weight_z(x):
|
|
abx = diff_abs(x)
|
|
if abx > 1.0:
|
|
return 0.0
|
|
else:
|
|
return d_diff_abs(x)
|
|
|
|
|
|
def naive_bilateral_slice_forward(output, grid, guide, input, gsz, has_offset,
|
|
total_count, output_chans):
|
|
h = gsz.h
|
|
w = gsz.w
|
|
gd = gsz.gd
|
|
gh = gsz.gh
|
|
gw = gsz.gw
|
|
input_chans = gsz.input_chans
|
|
coeff_stride = input_chans
|
|
grid_chans = input_chans * output_chans
|
|
|
|
if has_offset:
|
|
grid_chans += output_chans
|
|
coeff_stride += 1
|
|
|
|
for idx in range(total_count):
|
|
x = idx % w
|
|
y = idx // w % h
|
|
out_c = (idx // (h * w)) % output_chans
|
|
b = (idx // (output_chans * w * h))
|
|
|
|
gx = (x + 0.5) * gw / (1.0 * w)
|
|
gy = (y + 0.5) * gh / (1.0 * h)
|
|
gz = guide[int(b), int(y), int(x)] * gd
|
|
|
|
fx = int(np.floor(gx - 0.5))
|
|
fy = int(np.floor(gy - 0.5))
|
|
fz = int(np.floor(gz - 0.5))
|
|
|
|
value = 0.0
|
|
for in_c in range(0, coeff_stride):
|
|
coeff_sample = 0.0
|
|
|
|
for xx in range(fx, fx + 2):
|
|
x_ = max(min(xx, gw - 1), 0)
|
|
wx = max(1.0 - abs(xx + 0.5 - gx), 0.0)
|
|
|
|
for yy in range(fy, fy + 2):
|
|
y_ = max(min(yy, gh - 1), 0)
|
|
wy = max(1.0 - abs(yy + 0.5 - gy), 0.0)
|
|
|
|
for zz in range(fz, fz + 2):
|
|
z_ = max(min(zz, gd - 1), 0)
|
|
wz = weight_z(zz + 0.5 - gz)
|
|
c_ = coeff_stride * out_c + in_c
|
|
|
|
coeff_sample += grid[int(b), int(c_), int(z_), int(y_),
|
|
int(x_)] * wx * wy * wz
|
|
|
|
if in_c < input_chans:
|
|
value += coeff_sample * input[int(b), int(in_c), int(y), int(x)]
|
|
else:
|
|
value += coeff_sample
|
|
output[int(b), int(out_c), int(y), int(x)] = value
|
|
|
|
|
|
def naive_bilateral_slice(x, guide, grid, has_offset):
|
|
bs = x.shape[0]
|
|
h = x.shape[2]
|
|
w = x.shape[3]
|
|
input_chans = x.shape[1]
|
|
|
|
coeffs_chans = grid.shape[1]
|
|
if has_offset:
|
|
output_chans = coeffs_chans // (input_chans + 1)
|
|
else:
|
|
output_chans = coeffs_chans // input_chans
|
|
|
|
output = np.zeros([bs, int(output_chans), h, w]).astype(x.dtype)
|
|
|
|
gd = grid.shape[2]
|
|
gh = grid.shape[3]
|
|
gw = grid.shape[4]
|
|
|
|
gsz = Gsz(h, w, gd, gh, gw, input_chans)
|
|
total_count = bs * h * w * output.shape[1]
|
|
naive_bilateral_slice_forward(output, grid, guide, x, gsz, has_offset,
|
|
total_count, output.shape[1])
|
|
return output
|
|
|
|
|
|
@unittest.skipIf(not paddle.fluid.is_compiled_with_cuda(),
|
|
'CPU testing is not supported')
|
|
class TestBilateralSliceOp(OpTest):
|
|
def setUp(self):
|
|
self.initTestCase()
|
|
self.op_type = 'bilateral_slice'
|
|
batch_size = 3
|
|
h = 50
|
|
w = 30
|
|
c = 1
|
|
gh = 5
|
|
gw = 3
|
|
gd = 2
|
|
gc = 2
|
|
x = np.random.rand(batch_size, c, h, w).astype(self.data_type)
|
|
guide = np.random.rand(batch_size, h, w).astype(self.data_type)
|
|
grid = np.random.rand(batch_size, gc, gd, gh, gw).astype(self.data_type)
|
|
output_np = naive_bilateral_slice(x, guide, grid, self.has_offset)
|
|
|
|
self.inputs = {'X': x, 'Grid': grid, 'Guide': guide}
|
|
self.attrs = {'has_offset': self.has_offset, }
|
|
self.outputs = {'Out': output_np}
|
|
|
|
def test_check_output(self):
|
|
place = paddle.fluid.CUDAPlace(0)
|
|
self.check_output_with_place(place, atol=1e-5)
|
|
self.check_output
|
|
|
|
def test_check_grad(self):
|
|
place = paddle.fluid.CUDAPlace(0)
|
|
self.check_grad_with_place(place, ['X'], 'Out')
|
|
|
|
def initTestCase(self):
|
|
self.has_offset = False
|
|
self.data_type = 'float64'
|
|
|
|
|
|
@unittest.skipIf(not paddle.fluid.is_compiled_with_cuda(),
|
|
'CPU testing is not supported')
|
|
class TestBilateralSliceOp1(TestBilateralSliceOp):
|
|
def initTestCase(self):
|
|
self.has_offset = True
|
|
self.data_type = 'float32'
|
|
|
|
|
|
class TestBilateralSliceApi(unittest.TestCase):
|
|
def test_api(self):
|
|
x = paddle.fluid.data(
|
|
name='x', shape=[None, 3, 25, 15], dtype='float32')
|
|
guide = paddle.fluid.data(
|
|
name='guide', shape=[None, 25, 15], dtype='float32')
|
|
grid = paddle.fluid.data(
|
|
name='grid', shape=[None, None, 8, 5, 3], dtype='float32')
|
|
paddle.fluid.contrib.layers.bilateral_slice(x, guide, grid, False)
|
|
|
|
if not paddle.fluid.is_compiled_with_cuda():
|
|
return
|
|
|
|
with paddle.fluid.dygraph.guard():
|
|
x1 = paddle.rand([3, 1, 50, 30])
|
|
guide1 = paddle.rand([3, 50, 30])
|
|
grid1 = paddle.rand([3, 2, 2, 5, 3])
|
|
|
|
paddle.fluid.contrib.bilateral_slice(x1, guide1, grid1, False)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|