You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_device_guard.py

221 lines
9.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from op_test import OpTest
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
import warnings
def execute(main_program, startup_program):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_program)
exe.run(main_program)
def get_vaild_warning_num(warning, w):
num = 0
for i in range(len(w)):
if warning in str(w[i].message):
num += 1
return num
class TestDeviceGuard(unittest.TestCase):
def test_device_guard(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
data1 = fluid.layers.fill_constant(
shape=[1, 3, 8, 8], value=0.5, dtype='float32')
data2 = fluid.layers.fill_constant(
shape=[1, 3, 5, 5], value=0.5, dtype='float32')
shape = fluid.layers.shape(data2)
with fluid.device_guard("cpu"):
shape = fluid.layers.slice(
shape, axes=[0], starts=[0], ends=[4])
with fluid.device_guard("gpu"):
out = fluid.layers.crop_tensor(data1, shape=shape)
# check if the device attr is set correctly
all_ops = main_program.global_block().ops
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
for op in all_ops:
if op.type == 'slice':
self.assertEqual(op.desc.attr(device_attr_name), "cpu")
if op.type == 'crop_tensor':
self.assertEqual(op.desc.attr(device_attr_name), "gpu")
execute(main_program, startup_program)
def test_device_guard_with_id(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
data1 = fluid.layers.fill_constant(
shape=[1, 3, 8, 8], value=0.5, dtype='float32')
data2 = fluid.layers.fill_constant(
shape=[1, 3, 5, 5], value=0.5, dtype='float32')
shape = fluid.layers.shape(data2)
with fluid.device_guard("cpu"):
shape = fluid.layers.slice(
shape, axes=[0], starts=[0], ends=[4])
with fluid.device_guard("gpu:1"):
out = fluid.layers.crop_tensor(data1, shape=shape)
# check if the device attr is set correctly
all_ops = main_program.global_block().ops
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
for op in all_ops:
if op.type == 'slice':
self.assertEqual(op.desc.attr(device_attr_name), "cpu")
if op.type == 'crop_tensor':
self.assertEqual(op.desc.attr(device_attr_name), "gpu:1")
execute(main_program, startup_program)
def test_cpu_only_op(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
x = fluid.layers.fill_constant(
shape=[2, 255, 13, 13], value=0.3, dtype='float32')
gt_box = fluid.layers.fill_constant(
shape=[2, 6, 4], value=0.5, dtype='float32')
gt_label = fluid.layers.fill_constant(
shape=[2, 6], value=1.0, dtype='int32')
gt_score = fluid.layers.fill_constant(
shape=[2, 6], value=0.5, dtype='float32')
anchors = [
10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156,
198, 373, 326
]
anchor_mask = [0, 1, 2]
with fluid.device_guard("gpu"):
# yolov3_loss only has cpu kernel, so its cpu kernel will be executed
loss = fluid.layers.yolov3_loss(
x=x,
gt_box=gt_box,
gt_label=gt_label,
gt_score=gt_score,
anchors=anchors,
anchor_mask=anchor_mask,
class_num=80,
ignore_thresh=0.7,
downsample_ratio=32)
execute(main_program, startup_program)
def test_without_kernel_op(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
loop_len = fluid.layers.fill_constant(
shape=[1], dtype='int64', value=10)
cond = fluid.layers.less_than(x=i, y=loop_len)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
with fluid.device_guard("cpu"):
while_op = fluid.layers.While(cond=cond)
with while_op.block():
i = fluid.layers.increment(x=i, value=1, in_place=True)
fluid.layers.less_than(x=i, y=loop_len, cond=cond)
warning = "The Op(while) is not support to set device."
warning_num = get_vaild_warning_num(warning, w)
assert warning_num == 1
all_ops = main_program.global_block().ops
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
for op in all_ops:
if op.type == 'while':
self.assertEqual(op.desc.attr(device_attr_name), "")
execute(main_program, startup_program)
def test_error(self):
def device_attr():
with fluid.device_guard("cpu1"):
out = fluid.layers.fill_constant(
shape=[1], value=0.2, dtype='float32')
def device_attr2():
with fluid.device_guard("cpu:1"):
out = fluid.layers.fill_constant(
shape=[1], value=0.2, dtype='float32')
self.assertRaises(ValueError, device_attr)
self.assertRaises(ValueError, device_attr2)
def test_warning(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
with fluid.device_guard("gpu"):
x = fluid.layers.fill_constant(
shape=[1], value=3.0, dtype='float32', force_cpu=True)
y = fluid.layers.fill_constant(
shape=[1], value=4.0, dtype='float32')
result = fluid.layers.less_than(x=x, y=y, force_cpu=False)
warning = "\'device_guard\' has higher priority when they are used at the same time."
warning_num = get_vaild_warning_num(warning, w)
assert warning_num == 2
all_ops = main_program.global_block().ops
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
for op in all_ops:
self.assertEqual(op.desc.attr(device_attr_name), "gpu")
# check if op_descs have op_device attr
def test_op_descs_device_attr(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
data1 = fluid.layers.data(name="data_1", shape=[2], dtype="float32")
data2 = fluid.layers.data(name="data_2", shape=[2], dtype="float32")
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
fc1 = fluid.layers.fc(input=data1, size=10)
fc2 = fluid.layers.fc(input=fc1, size=10)
with fluid.device_guard("gpu"):
out = fluid.layers.softmax_with_cross_entropy(
logits=fc1 + fc2, label=label)
loss = fluid.layers.mean(out)
opt = fluid.optimizer.SGDOptimizer(0.1)
opt.minimize(loss)
all_ops = main_program.global_block().ops
device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
for op in all_ops:
self.assertEqual(True, op.desc.has_attr(device_attr_name))
# fill_constant(backward op) is append to mean op, which should have
# the same op_device value as mean op
if op.desc == 'fill_constant':
self.assertEqual(op.desc.attr(device_attr_name), "gpu")
if __name__ == '__main__':
unittest.main()