You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_dist_transpiler_config.py

185 lines
7.1 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.fluid as fluid
import gc
import paddle
paddle.enable_static()
gc.set_debug(gc.DEBUG_COLLECTABLE)
class TranspilerTest(unittest.TestCase):
def setUp(self):
self.trainer_id = 0
self.trainers = 2
self.pservers = 2
# NOTE: we do not actually bind this port
self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
self.pserver1_ep = "127.0.0.1:6174"
self.pserver2_ep = "127.0.0.1:6175"
self.sync_mode = True
self.transpiler = None
def net_conf(self):
x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
y_predict = fluid.layers.fc(input=x,
size=1000,
act=None,
param_attr=fluid.ParamAttr(name='fc_w'),
bias_attr=fluid.ParamAttr(name='fc_b'))
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
sgd_optimizer.minimize(avg_cost)
def get_main_program(self):
main = fluid.Program()
main.random_seed = 1
with fluid.program_guard(main):
self.net_conf()
self.origin_prog = main.clone()
return main
def get_trainer(self, config=None, sync_mode=True):
src = fluid.default_startup_program().clone()
t = self._transpiler_instance(config, sync_mode=True)
trainer_main = t.get_trainer_program(wait_port=False)
trainer_startup = fluid.default_startup_program()
assert (src.num_blocks == 1)
assert (trainer_startup.num_blocks == src.num_blocks)
return trainer_main, trainer_startup
def get_pserver(self, ep, config=None, sync_mode=True):
t = self._transpiler_instance(config, sync_mode)
pserver = t.get_pserver_program(ep)
startup = t.get_startup_program(ep, pserver)
return pserver, startup
def _transpiler_instance(self, config=None, sync_mode=True):
if not self.transpiler:
main = self.get_main_program()
self.transpiler = fluid.DistributeTranspiler(config=config)
self.transpiler.transpile(
self.trainer_id,
program=main,
pservers=self.pserver_eps,
trainers=self.trainers,
sync_mode=sync_mode)
return self.transpiler
def transpiler_test_impl(self):
pass
def test_transpiler(self):
main = fluid.Program()
startup = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, startup):
self.transpiler_test_impl()
# NOTE: run gc.collect to eliminate pybind side objects to
# prevent random double-deallocate when inherited in python.
del self.transpiler
del main
del startup
gc.collect()
class TestBasicModelAsync(TranspilerTest):
def transpiler_test_impl(self):
config = fluid.DistributeTranspilerConfig()
config.sync_mode = False
config.runtime_split_send_recv = True
pserver, startup = self.get_pserver(self.pserver1_ep, config, False)
pserver2, startup2 = self.get_pserver(self.pserver2_ep, config, False)
trainer, _ = self.get_trainer(config, False)
self.assertEqual([op.type for op in trainer.global_block().ops], [
'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
'elementwise_add_grad', 'send', 'mul_grad', 'send', 'recv', 'recv'
])
self.assertEqual(len(pserver.blocks), 3)
# block0: listen_and_serv
self.assertEqual([op.type for op in pserver.blocks[0].ops],
["listen_and_serv"])
self.assertEqual(pserver.blocks[0].ops[0].attr("distributed_mode"), 1)
# block1~2: optimize pass
self.assertEqual([op.type for op in pserver.blocks[2].ops], ["sgd"])
class TestBasicModelHalfAsync(TranspilerTest):
def transpiler_test_impl(self):
config = fluid.DistributeTranspilerConfig()
config.sync_mode = False
config.runtime_split_send_recv = False
pserver, startup = self.get_pserver(self.pserver1_ep, config, False)
pserver2, startup2 = self.get_pserver(self.pserver2_ep, config, False)
trainer, _ = self.get_trainer(config, False)
self.assertEqual([op.type for op in trainer.global_block().ops], [
'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
'elementwise_add_grad', 'send', 'mul_grad', 'split_byref', 'send',
'recv', 'recv', 'concat'
])
self.assertEqual(len(pserver.blocks), 3)
# block0: listen_and_serv
self.assertEqual([op.type for op in pserver.blocks[0].ops],
["listen_and_serv"])
self.assertEqual(pserver.blocks[0].ops[0].attr("distributed_mode"), 2)
# block1~2: optimize pass
self.assertEqual([op.type for op in pserver.blocks[2].ops], ["sgd"])
class TestBasicModelSync(TranspilerTest):
def transpiler_test_impl(self):
config = fluid.DistributeTranspilerConfig()
config.sync_mode = True
config.runtime_split_send_recv = False
pserver, startup = self.get_pserver(self.pserver1_ep, config, True)
pserver2, startup2 = self.get_pserver(self.pserver2_ep, config, True)
trainer, _ = self.get_trainer(config, True)
self.assertEqual([op.type for op in trainer.global_block().ops], [
'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
'elementwise_add_grad', 'send', 'mul_grad', 'split_byref', 'send',
'send_barrier', 'recv', 'recv', 'fetch_barrier', 'concat'
])
self.assertEqual(len(pserver.blocks), 3)
# block0: listen_and_serv
self.assertEqual([op.type for op in pserver.blocks[0].ops],
["listen_and_serv"])
self.assertEqual(pserver.blocks[0].ops[0].attr("distributed_mode"), 0)
# block1~2: optimize pass
self.assertEqual([op.type for op in pserver.blocks[2].ops],
["sum", "scale", "sgd"])
if __name__ == "__main__":
unittest.main()