You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_nll_loss.py

971 lines
42 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
from op_test import OpTest
def nll_loss_1d(logs, targets, weight=None, reduction='mean',
ignore_index=-100):
input_shape = logs.shape
N = input_shape[0]
C = input_shape[1]
out = np.zeros_like(targets).astype(np.float64)
total_weight = 0
for i in range(N):
cur_target = targets[i]
if cur_target == ignore_index:
out[i] = 0
continue
cur_weight = weight[cur_target] if weight is not None else 1
total_weight += cur_weight
out[i] = -logs[i][cur_target] * cur_weight
if reduction == 'sum':
return np.sum(out), np.array([total_weight]).astype('float64')
elif reduction == 'mean':
return out.sum() / total_weight, np.array(
[total_weight]).astype('float64')
elif reduction == 'none':
return out
def nll_loss_2d(logs, targets, weight=None, reduction='mean',
ignore_index=-100):
input_shape = logs.shape
N = input_shape[0]
H = input_shape[2]
W = input_shape[3]
out = np.zeros_like(targets).astype(np.float64)
total_weight = 0
for i in range(N):
for h in range(H):
for w in range(W):
cur_target = targets[i][h][w]
if cur_target == ignore_index:
out[i][h][w] = 0
continue
cur_weight = weight[cur_target] if weight is not None else 1
total_weight += cur_weight
out[i][h][w] = -logs[i][cur_target][h][w] * cur_weight
if reduction == 'sum':
return np.sum(out), np.array([total_weight]).astype('float64')
elif reduction == 'mean':
return out.sum() / total_weight, np.array(
[total_weight]).astype('float64')
elif reduction == 'none':
return out
class TestNLLLoss(unittest.TestCase):
def test_NLLLoss_1D_mean(self):
input_np = np.random.random(size=(10, 10)).astype(np.float64)
label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
#place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(name='input', shape=[10, 10], dtype='float64')
label = fluid.data(name='label', shape=[10], dtype='int64')
nll_loss = paddle.nn.loss.NLLLoss()
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss()
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = nll_loss_1d(input_np, label_np)[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_1D_sum(self):
input_np = np.random.random(size=(10, 10)).astype(np.float64)
label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
#place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(name='input', shape=[10, 10], dtype='float64')
label = fluid.data(name='label', shape=[10], dtype='int64')
nll_loss = paddle.nn.loss.NLLLoss(reduction='sum')
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(reduction='sum')
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = nll_loss_1d(input_np, label_np, reduction='sum')[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_1D_with_weight_mean(self):
input_np = np.random.random(size=(10, 10)).astype(np.float64)
label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64)
weight_np = np.random.random(size=(10, )).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
# place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(name='input', shape=[10, 10], dtype='float64')
label = fluid.data(name='label', shape=[10], dtype='int64')
weight = fluid.data(name='weight', shape=[10], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss(weight=weight)
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(
weight=fluid.dygraph.to_variable(weight_np))
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = nll_loss_1d(input_np, label_np, weight=weight_np)[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_1D_with_weight_sum(self):
input_np = np.random.random(size=(10, 10)).astype(np.float64)
label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64)
weight_np = np.random.random(size=(10, )).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
# place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(name='input', shape=[10, 10], dtype='float64')
label = fluid.data(name='label', shape=[10], dtype='int64')
weight = fluid.data(name='weight', shape=[10], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss(weight=weight, reduction='sum')
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(
weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = nll_loss_1d(
input_np, label_np, weight=weight_np, reduction='sum')[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_1D_with_weight_mean_cpu(self):
input_np = np.random.random(size=(10, 10)).astype(np.float64)
label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64)
weight_np = np.random.random(size=(10, )).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(name='input', shape=[10, 10], dtype='float64')
label = fluid.data(name='label', shape=[10], dtype='int64')
weight = fluid.data(name='weight', shape=[10], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss(weight=weight)
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(
weight=fluid.dygraph.to_variable(weight_np))
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = nll_loss_1d(input_np, label_np, weight=weight_np)[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_1D_with_weight_no_reduce_cpu(self):
input_np = np.random.random(size=(10, 10)).astype(np.float64)
label_np = np.random.randint(0, 10, size=(10, )).astype(np.int64)
weight_np = np.random.random(size=(10, )).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(name='input', shape=[10, 10], dtype='float64')
label = fluid.data(name='label', shape=[10], dtype='int64')
weight = fluid.data(name='weight', shape=[10], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss(weight=weight, reduction='none')
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(
weight=fluid.dygraph.to_variable(weight_np), reduction='none')
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = nll_loss_1d(
input_np, label_np, weight=weight_np, reduction='none')
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_2D_mean(self):
input_np = np.random.random(size=(5, 3, 5, 5)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, 5, 5)).astype(np.int64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
#place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[5, 3, 5, 5], dtype='float64')
label = fluid.data(name='label', shape=[5, 5, 5], dtype='int64')
nll_loss = paddle.nn.loss.NLLLoss()
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss()
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = nll_loss_2d(input_np, label_np)[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_2D_sum(self):
input_np = np.random.random(size=(5, 3, 5, 5)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, 5, 5)).astype(np.int64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
#place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[5, 3, 5, 5], dtype='float64')
label = fluid.data(name='label', shape=[5, 5, 5], dtype='int64')
nll_loss = paddle.nn.loss.NLLLoss(reduction='sum')
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(reduction='sum')
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = nll_loss_2d(input_np, label_np, reduction='sum')[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_2D_with_weight_mean(self):
input_np = np.random.random(size=(5, 3, 5, 5)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, 5, 5)).astype(np.int64)
weight_np = np.random.random(size=(3, )).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
#place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[5, 3, 5, 5], dtype='float64')
label = fluid.data(name='label', shape=[5, 5, 5], dtype='int64')
weight = fluid.data(name='weight', shape=[3], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss(weight=weight)
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(
weight=fluid.dygraph.to_variable(weight_np))
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = nll_loss_2d(input_np, label_np, weight=weight_np)[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_2D_with_weight_mean_cpu(self):
input_np = np.random.random(size=(5, 3, 5, 5)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, 5, 5)).astype(np.int64)
weight_np = np.random.random(size=(3, )).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[5, 3, 5, 5], dtype='float64')
label = fluid.data(name='label', shape=[5, 5, 5], dtype='int64')
weight = fluid.data(name='weight', shape=[3], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss(weight=weight)
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(
weight=fluid.dygraph.to_variable(weight_np))
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = nll_loss_2d(input_np, label_np, weight=weight_np)[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_2D_with_weight_sum(self):
input_np = np.random.random(size=(5, 3, 5, 5)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, 5, 5)).astype(np.int64)
weight_np = np.random.random(size=(3, )).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[5, 3, 5, 5], dtype='float64')
label = fluid.data(name='label', shape=[5, 5, 5], dtype='int64')
weight = fluid.data(name='weight', shape=[3], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss(weight=weight, reduction='sum')
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(
weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = nll_loss_2d(
input_np, label_np, weight=weight_np, reduction='sum')[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_in_dims_not_2or4_mean(self):
input_np = np.random.random(size=(5, 3, 5, 5, 5)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, 5, 5, 5)).astype(np.int64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
#place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[5, 3, 5, 5, 5], dtype='float64')
label = fluid.data(name='label', shape=[5, 5, 5, 5], dtype='int64')
nll_loss = paddle.nn.loss.NLLLoss()
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss()
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
input_shape = input_np.shape
label_shape = label_np.shape
input_np_reshape = np.reshape(input_np,
(input_shape[0], input_shape[1], 1, -1))
label_np_reshape = np.reshape(label_np, (label_shape[0], 1, -1))
expected = nll_loss_2d(input_np_reshape, label_np_reshape)[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_in_dims_not_2or4_with_weight_mean(self):
input_np = np.random.random(size=(5, 3, 5, 5, 5)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, 5, 5, 5)).astype(np.int64)
weight_np = np.random.random(size=(3, )).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
#place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[5, 3, 5, 5, 5], dtype='float64')
label = fluid.data(name='label', shape=[5, 5, 5, 5], dtype='int64')
weight = fluid.data(name='weight', shape=[3], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss(weight=weight)
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(
weight=fluid.dygraph.to_variable(weight_np))
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
input_shape = input_np.shape
label_shape = label_np.shape
input_np_reshape = np.reshape(input_np,
(input_shape[0], input_shape[1], 1, -1))
label_np_reshape = np.reshape(label_np, (label_shape[0], 1, -1))
expected = nll_loss_2d(
input_np_reshape, label_np_reshape, weight=weight_np)[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_in_dims_not_2or4_with_weight_sum(self):
input_np = np.random.random(size=(5, 3, 5, 5, 5)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, 5, 5, 5)).astype(np.int64)
weight_np = np.random.random(size=(3, )).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[5, 3, 5, 5, 5], dtype='float64')
label = fluid.data(name='label', shape=[5, 5, 5, 5], dtype='int64')
weight = fluid.data(name='weight', shape=[3], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss(weight=weight, reduction='sum')
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(
weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
input_shape = input_np.shape
label_shape = label_np.shape
input_np_reshape = np.reshape(input_np,
(input_shape[0], input_shape[1], 1, -1))
label_np_reshape = np.reshape(label_np, (label_shape[0], 1, -1))
expected = nll_loss_2d(
input_np_reshape,
label_np_reshape,
weight=weight_np,
reduction='sum')[0]
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_in_dims_not_2or4_with_weight_no_reduce(self):
input_np = np.random.random(size=(5, 3, 5, 5, 5)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, 5, 5, 5)).astype(np.int64)
weight_np = np.random.random(size=(3, )).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
#place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[5, 3, 5, 5, 5], dtype='float64')
label = fluid.data(name='label', shape=[5, 5, 5, 5], dtype='int64')
weight = fluid.data(name='weight', shape=[3], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss(weight=weight, reduction='none')
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(
weight=fluid.dygraph.to_variable(weight_np), reduction='none')
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
input_shape = input_np.shape
label_shape = label_np.shape
out_shape = (input_shape[0], ) + input_shape[2:]
input_np_reshape = np.reshape(input_np,
(input_shape[0], input_shape[1], 1, -1))
label_np_reshape = np.reshape(label_np, (label_shape[0], 1, -1))
expected = nll_loss_2d(
input_np_reshape,
label_np_reshape,
weight=weight_np,
reduction='none')
expected = np.reshape(expected, out_shape)
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_NLLLoss_in_dims_not_2or4_with_weight_no_reduce_cpu(self):
input_np = np.random.random(size=(5, 3, 5, 5, 5)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, 5, 5, 5)).astype(np.int64)
weight_np = np.random.random(size=(3, )).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[5, 3, 5, 5, 5], dtype='float64')
label = fluid.data(name='label', shape=[5, 5, 5, 5], dtype='int64')
weight = fluid.data(name='weight', shape=[3], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss(weight=weight, reduction='none')
res = nll_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
nll_loss = paddle.nn.loss.NLLLoss(
weight=fluid.dygraph.to_variable(weight_np), reduction='none')
dy_res = nll_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
input_shape = input_np.shape
label_shape = label_np.shape
out_shape = (input_shape[0], ) + input_shape[2:]
input_np_reshape = np.reshape(input_np,
(input_shape[0], input_shape[1], 1, -1))
label_np_reshape = np.reshape(label_np, (label_shape[0], 1, -1))
expected = nll_loss_2d(
input_np_reshape,
label_np_reshape,
weight=weight_np,
reduction='none')
expected = np.reshape(expected, out_shape)
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
class TestNLLLossOp1DWithReduce(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "nll_loss"
self.with_weight = False
input_np = np.random.uniform(0.1, 0.8,
self.input_shape).astype("float64")
label_np = np.random.randint(0, self.input_shape[1],
self.label_shape).astype("int64")
output_np, total_weight_np = nll_loss_1d(input_np, label_np)
self.inputs = {'X': input_np, 'Label': label_np}
if self.with_weight:
weight_np = np.random.uniform(0.1, 0.8,
self.input_shape[1]).astype("float64")
output_np, total_weight_np = nll_loss_1d(
input_np, label_np, weight=weight_np)
self.inputs['Weight'] = weight_np
self.outputs = {'Out': output_np, 'Total_weight': total_weight_np}
self.attrs = {'reduction': 'mean', 'ignore_index': -100}
def test_check_output(self):
self.check_output()
def test_check_output_with_weight(self):
self.with_weight = True
self.check_output()
def test_check_grad(self):
self.with_weight = True
place = fluid.CPUPlace()
self.check_grad_with_place(place, ['X'], 'Out')
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self.check_grad_with_place(place, ['X'], 'Out')
def init_test_case(self):
self.input_shape = [10, 10]
self.label_shape = [10]
class TestNLLLossOp1DNoReduce(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "nll_loss"
self.with_weight = False
input_np = np.random.uniform(0.1, 0.8,
self.input_shape).astype("float64")
label_np = np.random.randint(0, self.input_shape[1],
self.label_shape).astype("int64")
output_np = nll_loss_1d(input_np, label_np, reduction='none')
total_weight_np = np.array([0]).astype('float64')
self.inputs = {'X': input_np, 'Label': label_np}
if self.with_weight:
weight_np = np.random.uniform(0.1, 0.8,
self.input_shape[1]).astype("float64")
output_np, total_weight_np = nll_loss_1d(
input_np, label_np, weight=weight_np, reduction='none')
self.inputs['Weight'] = weight_np
self.outputs = {'Out': output_np, 'Total_weight': total_weight_np}
self.attrs = {'reduction': 'none', 'ignore_index': -100}
def test_check_output(self):
self.check_output()
def test_check_output_with_weight(self):
self.with_weight = True
self.check_output()
def test_check_grad(self):
self.with_weight = True
place = fluid.CPUPlace()
self.check_grad_with_place(place, ['X'], 'Out')
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self.check_grad_with_place(place, ['X'], 'Out')
def init_test_case(self):
self.input_shape = [10, 10]
self.label_shape = [10]
class TestNLLLossOp2DWithReduce(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "nll_loss"
self.with_weight = False
input_np = np.random.uniform(0.1, 0.8,
self.input_shape).astype("float64")
label_np = np.random.randint(0, self.input_shape[1],
self.label_shape).astype("int64")
output_np, total_weight_np = nll_loss_2d(input_np, label_np)
self.inputs = {'X': input_np, 'Label': label_np}
if self.with_weight:
weight_np = np.random.uniform(0.1, 0.8,
self.input_shape[1]).astype("float64")
output_np, total_weight_np = nll_loss_2d(
input_np, label_np, weight=weight_np)
self.inputs['Weight'] = weight_np
self.outputs = {'Out': output_np, 'Total_weight': total_weight_np}
self.attrs = {'reduction': 'mean', 'ignore_index': -100}
def test_check_output(self):
self.check_output()
def test_check_output_with_weight(self):
self.with_weight = True
self.check_output()
def test_check_grad(self):
self.with_weight = True
place = fluid.CPUPlace()
self.check_grad_with_place(place, ['X'], 'Out')
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self.check_grad_with_place(place, ['X'], 'Out')
def init_test_case(self):
self.input_shape = [5, 3, 5, 5]
self.label_shape = [5, 5, 5]
class TestNLLLossOp2DNoReduce(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "nll_loss"
self.with_weight = False
input_np = np.random.uniform(0.1, 0.8,
self.input_shape).astype("float64")
label_np = np.random.randint(0, self.input_shape[1],
self.label_shape).astype("int64")
output_np = nll_loss_2d(input_np, label_np, reduction='none')
total_weight_np = np.array([0]).astype('float64')
self.inputs = {'X': input_np, 'Label': label_np}
if self.with_weight:
weight_np = np.random.uniform(0.1, 0.8,
self.input_shape[1]).astype("float64")
output_np, total_weight_np = nll_loss_2d(
input_np, label_np, weight=weight_np, reduction='none')
self.inputs['Weight'] = weight_np
self.outputs = {'Out': output_np, 'Total_weight': total_weight_np}
self.attrs = {'reduction': 'none', 'ignore_index': -100}
def test_check_output(self):
self.check_output()
def test_check_output_with_weight(self):
self.with_weight = True
self.check_output()
def test_check_grad(self):
self.with_weight = True
place = fluid.CPUPlace()
self.check_grad_with_place(place, ['X'], 'Out')
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self.check_grad_with_place(place, ['X'], 'Out')
def init_test_case(self):
self.input_shape = [5, 3, 5, 5]
self.label_shape = [5, 5, 5]
class TestNLLLossName(unittest.TestCase):
def test_name(self):
prog = paddle.static.Program()
startup_prog = paddle.static.Program()
place = paddle.CPUPlace()
with paddle.static.program_guard(prog, startup_prog):
x = paddle.fluid.data(name='x', shape=[10, 10], dtype='float64')
label = paddle.fluid.data(name='label', shape=[10], dtype='int64')
nll_loss = paddle.nn.loss.NLLLoss(name='nll_loss')
res = nll_loss(x, label)
self.assertTrue(res.name.startswith('nll_loss'))
class TestNLLLossInvalidArgs(unittest.TestCase):
def test_x_dim_value_error(self):
def test_x_dim_lt_2():
prog = paddle.static.Program()
startup_prog = paddle.static.Program()
place = paddle.CPUPlace()
with paddle.static.program_guard(prog, startup_prog):
x = paddle.fluid.data(name='x', shape=[10, ], dtype='float64')
label = paddle.fluid.data(name='label', shape=[10, ], dtype='float64')
nll_loss = paddle.nn.loss.NLLLoss()
res = nll_loss(x, label)
self.assertRaises(ValueError, test_x_dim_lt_2)
def test_x_dim_imperative_lt_2():
with fluid.dygraph.guard():
x_np = np.random.random(size=(5, )).astype(np.float64)
label_np = np.random.randint(0, 10, size=(5, )).astype(np.int64)
x = paddle.to_tensor(x_np)
label = paddle.to_tensor(label_np)
nll_loss = paddle.nn.loss.NLLLoss()
res = nll_loss(x, label)
self.assertRaises(ValueError, test_x_dim_imperative_lt_2)
def test_reduction_value_error(self):
def test_NLLLoss_reduction_not_sum_mean_none():
prog = paddle.static.Program()
startup_prog = paddle.static.Program()
place = paddle.CPUPlace()
with paddle.static.program_guard(prog, startup_prog):
x = paddle.fluid.data(name='x', shape=[10, 10], dtype='float64')
label = paddle.fluid.data(name='label', shape=[10], dtype='int64')
nll_loss = paddle.nn.loss.NLLLoss(reduction='')
res = nll_loss(x, label)
self.assertRaises(ValueError, test_NLLLoss_reduction_not_sum_mean_none)
def test_NLLLoss_reduction_imperative_not_sum_mean_none():
with fluid.dygraph.guard():
x_np = np.random.random(size=(5, 3)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, )).astype(np.int64)
x = paddle.to_tensor(x_np)
label = paddle.to_tensor(label_np)
nll_loss = paddle.nn.loss.NLLLoss(reduction='')
res = nll_loss(x, label)
self.assertRaises(ValueError,
test_NLLLoss_reduction_imperative_not_sum_mean_none)
def test_nll_loss_function_reduction_not_sum_mean_none():
prog = paddle.static.Program()
startup_prog = paddle.static.Program()
place = paddle.CPUPlace()
with paddle.static.program_guard(prog, startup_prog):
x = paddle.fluid.data(name='x', shape=[10, 10], dtype='float64')
label = paddle.fluid.data(name='label', shape=[10], dtype='int64')
res = paddle.nn.functional.nll_loss(x, label, reduction='')
self.assertRaises(ValueError,
test_nll_loss_function_reduction_not_sum_mean_none)
def test_nll_loss_function_reduction_imperative_not_sum_mean_none():
with fluid.dygraph.guard():
x_np = np.random.random(size=(5, 3)).astype(np.float64)
label_np = np.random.randint(0, 3, size=(5, )).astype(np.int64)
x = paddle.to_tensor(x_np)
label = paddle.to_tensor(label_np)
res = paddle.nn.functional.nll_loss(x, label, reduction='')
self.assertRaises(
ValueError,
test_nll_loss_function_reduction_imperative_not_sum_mean_none)
if __name__ == "__main__":
unittest.main()