You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_pipeline.py

226 lines
8.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
import os
import shutil
import unittest
import math
def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
act=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=False)
return fluid.layers.batch_norm(
input=conv,
act=act, )
def shortcut(input, ch_out, stride, is_first):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1 or is_first == True:
return conv_bn_layer(input, ch_out, 1, stride)
else:
return input
def bottleneck_block(input, num_filters, stride):
conv0 = conv_bn_layer(
input=input, num_filters=num_filters, filter_size=1, act='relu')
conv1 = conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
conv2 = conv_bn_layer(
input=conv1, num_filters=num_filters * 4, filter_size=1, act=None)
short = shortcut(input, num_filters * 4, stride, is_first=False)
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def basic_block(input, num_filters, stride, is_first):
conv0 = conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=3,
act='relu',
stride=stride)
conv1 = conv_bn_layer(
input=conv0, num_filters=num_filters, filter_size=3, act=None)
short = shortcut(input, num_filters, stride, is_first)
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
def build_network(input, layers=50, class_dim=1000):
supported_layers = [18, 34, 50, 101, 152]
assert layers in supported_layers
depth = None
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_filters = [64, 128, 256, 512]
with fluid.device_guard("cpu"):
conv = conv_bn_layer(
input=input, num_filters=64, filter_size=7, stride=2, act='relu')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
if layers >= 50:
for block in range(len(depth)):
with fluid.device_guard("gpu:0"):
for i in range(depth[block]):
conv = bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1)
with fluid.device_guard("gpu:0"):
pool = fluid.layers.pool2d(
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
else:
for block in range(len(depth)):
with fluid.device_guard("gpu:0"):
for i in range(depth[block]):
conv = basic_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
is_first=block == i == 0)
with fluid.device_guard("gpu:0"):
pool = fluid.layers.pool2d(
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
return out
class TestPipeline(unittest.TestCase):
""" TestCases for Pipeline Training. """
def _run(self, debug):
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
with fluid.device_guard("cpu"):
image = fluid.layers.data(
name="image", shape=[3, 224, 224], dtype="float32")
label = fluid.layers.data(
name="label", shape=[1], dtype="int64")
data_loader = fluid.io.DataLoader.from_generator(
feed_list=[image, label],
capacity=64,
use_double_buffer=True,
iterable=False)
fc = build_network(image, layers=50)
with fluid.device_guard("gpu:0"):
out, prob = fluid.layers.softmax_with_cross_entropy(
logits=fc, label=label, return_softmax=True)
loss = fluid.layers.mean(out)
acc_top1 = fluid.layers.accuracy(input=prob, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=prob, label=label, k=5)
base_lr = 0.1
passes = [30, 60, 80, 90]
total_images = 1281167
steps_per_pass = total_images // 128
bd = [steps_per_pass * p for p in passes]
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
lr_val = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
optimizer = fluid.optimizer.MomentumOptimizer(
lr_val,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
optimizer = fluid.optimizer.PipelineOptimizer(
optimizer, num_microbatches=2)
optimizer.minimize(loss)
def train_reader():
for _ in range(4):
img = np.random.random(size=[3, 224, 224]).astype('float32')
label = np.random.random(size=[1]).astype('int64')
yield img, label
data_loader.set_sample_generator(train_reader, batch_size=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
data_loader.start()
exe.train_from_dataset(main_prog, debug=debug)
def test_pipeline(self):
self._run(False)
self._run(True)
def test_pipeline_noneoptimizer(self):
with fluid.device_guard("gpu:0"):
x = fluid.layers.data(
name='x', shape=[1], dtype='int64', lod_level=0)
y = fluid.layers.data(
name='y', shape=[1], dtype='int64', lod_level=0)
emb_x = layers.embedding(
input=x,
param_attr=fluid.ParamAttr(name="embx"),
size=[10, 2],
is_sparse=False)
fc = layers.fc(input=emb_x,
name="fc",
size=1,
num_flatten_dims=1,
bias_attr=False)
loss = layers.reduce_mean(fc)
optimizer = fluid.optimizer.SGD(learning_rate=0.5)
with self.assertRaises(ValueError):
optimizer = fluid.optimizer.PipelineOptimizer(
dict(), num_microbatches=2)
if __name__ == '__main__':
unittest.main()