You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_unsqueeze_op.py

254 lines
9.2 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from op_test import OpTest
paddle.enable_static()
# Correct: General.
class TestUnsqueezeOp(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "unsqueeze"
self.inputs = {"X": np.random.random(self.ori_shape).astype("float64")}
self.init_attrs()
self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
def init_test_case(self):
self.ori_shape = (3, 40)
self.axes = (1, 2)
self.new_shape = (3, 1, 1, 40)
def init_attrs(self):
self.attrs = {"axes": self.axes}
# Correct: Single input index.
class TestUnsqueezeOp1(TestUnsqueezeOp):
def init_test_case(self):
self.ori_shape = (20, 5)
self.axes = (-1, )
self.new_shape = (20, 5, 1)
# Correct: Mixed input axis.
class TestUnsqueezeOp2(TestUnsqueezeOp):
def init_test_case(self):
self.ori_shape = (20, 5)
self.axes = (0, -1)
self.new_shape = (1, 20, 5, 1)
# Correct: There is duplicated axis.
class TestUnsqueezeOp3(TestUnsqueezeOp):
def init_test_case(self):
self.ori_shape = (10, 2, 5)
self.axes = (0, 3, 3)
self.new_shape = (1, 10, 2, 1, 1, 5)
# Correct: Reversed axes.
class TestUnsqueezeOp4(TestUnsqueezeOp):
def init_test_case(self):
self.ori_shape = (10, 2, 5)
self.axes = (3, 1, 1)
self.new_shape = (10, 1, 1, 2, 5, 1)
class API_TestUnsqueeze(unittest.TestCase):
def test_out(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
data1 = paddle.static.data('data1', shape=[-1, 10], dtype='float64')
result_squeeze = paddle.unsqueeze(data1, axis=[1])
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
input1 = np.random.random([5, 1, 10]).astype('float64')
input = np.squeeze(input1, axis=1)
result, = exe.run(feed={"data1": input},
fetch_list=[result_squeeze])
self.assertTrue(np.allclose(input1, result))
class TestUnsqueezeOpError(unittest.TestCase):
def test_errors(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
# The type of axis in split_op should be int or Variable.
def test_axes_type():
x6 = paddle.static.data(
shape=[-1, 10], dtype='float16', name='x3')
paddle.unsqueeze(x6, axis=3.2)
self.assertRaises(TypeError, test_axes_type)
class API_TestUnsqueeze2(unittest.TestCase):
def test_out(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
data1 = paddle.static.data('data1', shape=[-1, 10], dtype='float64')
data2 = paddle.static.data('data2', shape=[1], dtype='int32')
result_squeeze = paddle.unsqueeze(data1, axis=data2)
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
input1 = np.random.random([5, 1, 10]).astype('float64')
input2 = np.array([1]).astype('int32')
input = np.squeeze(input1, axis=1)
result1, = exe.run(feed={"data1": input,
"data2": input2},
fetch_list=[result_squeeze])
self.assertTrue(np.allclose(input1, result1))
class API_TestUnsqueeze3(unittest.TestCase):
def test_out(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
data1 = paddle.static.data('data1', shape=[-1, 10], dtype='float64')
data2 = paddle.static.data('data2', shape=[1], dtype='int32')
result_squeeze = paddle.unsqueeze(data1, axis=[data2, 3])
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
input1 = np.random.random([5, 1, 10, 1]).astype('float64')
input2 = np.array([1]).astype('int32')
input = np.squeeze(input1)
result1, = exe.run(feed={"data1": input,
"data2": input2},
fetch_list=[result_squeeze])
self.assertTrue(np.array_equal(input1, result1))
self.assertEqual(input1.shape, result1.shape)
class API_TestDyUnsqueeze(unittest.TestCase):
def test_out(self):
paddle.disable_static()
input_1 = np.random.random([5, 1, 10]).astype("int32")
input1 = np.expand_dims(input_1, axis=1)
input = paddle.to_tensor(input_1)
output = paddle.unsqueeze(input, axis=[1])
out_np = output.numpy()
self.assertTrue(np.array_equal(input1, out_np))
self.assertEqual(input1.shape, out_np.shape)
class API_TestDyUnsqueeze2(unittest.TestCase):
def test_out(self):
paddle.disable_static()
input1 = np.random.random([5, 10]).astype("int32")
out1 = np.expand_dims(input1, axis=1)
input = paddle.to_tensor(input1)
output = paddle.unsqueeze(input, axis=1)
out_np = output.numpy()
self.assertTrue(np.array_equal(out1, out_np))
self.assertEqual(out1.shape, out_np.shape)
class API_TestDyUnsqueezeAxisTensor(unittest.TestCase):
def test_out(self):
paddle.disable_static()
input1 = np.random.random([5, 10]).astype("int32")
out1 = np.expand_dims(input1, axis=1)
out1 = np.expand_dims(out1, axis=2)
input = paddle.to_tensor(input1)
output = paddle.unsqueeze(input, axis=paddle.to_tensor([1, 2]))
out_np = output.numpy()
self.assertTrue(np.array_equal(out1, out_np))
self.assertEqual(out1.shape, out_np.shape)
class API_TestDyUnsqueezeAxisTensorList(unittest.TestCase):
def test_out(self):
paddle.disable_static()
input1 = np.random.random([5, 10]).astype("int32")
# Actually, expand_dims supports tuple since version 1.18.0
out1 = np.expand_dims(input1, axis=1)
out1 = np.expand_dims(out1, axis=2)
input = paddle.to_tensor(input1)
output = paddle.unsqueeze(
paddle.to_tensor(input1),
axis=[paddle.to_tensor([1]), paddle.to_tensor([2])])
out_np = output.numpy()
self.assertTrue(np.array_equal(out1, out_np))
self.assertEqual(out1.shape, out_np.shape)
class API_TestDygraphUnSqueeze(unittest.TestCase):
def test_out(self):
paddle.disable_static()
input_1 = np.random.random([5, 1, 10]).astype("int32")
input = paddle.to_tensor(input_1)
output = paddle.unsqueeze(input, axis=[1])
out_np = output.numpy()
expected_out = np.expand_dims(input_1, axis=1)
self.assertTrue(np.allclose(expected_out, out_np))
def test_out_int8(self):
paddle.disable_static()
input_1 = np.random.random([5, 1, 10]).astype("int8")
input = paddle.to_tensor(input_1)
output = paddle.unsqueeze(input, axis=[1])
out_np = output.numpy()
expected_out = np.expand_dims(input_1, axis=1)
self.assertTrue(np.allclose(expected_out, out_np))
def test_out_uint8(self):
paddle.disable_static()
input_1 = np.random.random([5, 1, 10]).astype("uint8")
input = paddle.to_tensor(input_1)
output = paddle.unsqueeze(input, axis=1)
out_np = output.numpy()
expected_out = np.expand_dims(input_1, axis=1)
self.assertTrue(np.allclose(expected_out, out_np))
def test_axis_not_list(self):
paddle.disable_static()
input_1 = np.random.random([5, 1, 10]).astype("int32")
input = paddle.to_tensor(input_1)
output = paddle.unsqueeze(input, axis=1)
out_np = output.numpy()
expected_out = np.expand_dims(input_1, axis=1)
self.assertTrue(np.allclose(expected_out, out_np))
def test_dimension_not_1(self):
paddle.disable_static()
input_1 = np.random.random([5, 1, 10]).astype("int32")
input = paddle.to_tensor(input_1)
output = paddle.unsqueeze(input, axis=(1, 2))
out_np = output.numpy()
expected_out = np.expand_dims(input_1, axis=1)
self.assertTrue(np.allclose(expected_out, out_np))
if __name__ == "__main__":
unittest.main()