You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_bce_loss.py

148 lines
5.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.fluid as fluid
import numpy as np
import unittest
from op_test import OpTest
class TestBCELoss(unittest.TestCase):
def test_BCELoss(self):
input_np = np.random.random(size=(20, 30)).astype(np.float64)
label_np = np.random.random(size=(20, 30)).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
places = [fluid.CPUPlace()]
if fluid.core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
reductions = ['sum', 'mean', 'none']
for place in places:
for red in reductions:
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[None, 30], dtype='float64')
label = fluid.data(
name='label', shape=[None, 30], dtype='float64')
bce_loss = paddle.nn.loss.BCELoss(reduction=red)
res = bce_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(
prog,
feed={"input": input_np,
"label": label_np},
fetch_list=[res])
with fluid.dygraph.guard():
bce_loss = paddle.nn.loss.BCELoss(reduction=red)
dy_res = bce_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = -1 * (label_np * np.log(input_np) +
(1. - label_np) * np.log(1. - input_np))
if red == 'mean':
expected = np.mean(expected)
elif red == 'sum':
expected = np.sum(expected)
else:
expected = expected
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def test_BCELoss_weight(self):
input_np = np.random.random(size=(2, 3, 4, 10)).astype(np.float64)
label_np = np.random.random(size=(2, 3, 4, 10)).astype(np.float64)
weight_np = np.random.random(size=(3, 4, 10)).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(
name='input', shape=[None, 3, 4, 10], dtype='float64')
label = fluid.data(
name='label', shape=[None, 3, 4, 10], dtype='float64')
weight = fluid.data(
name='weight', shape=[3, 4, 10], dtype='float64')
bce_loss = paddle.nn.loss.BCELoss(weight=weight)
res = bce_loss(input, label)
exe = fluid.Executor(place)
static_result = exe.run(prog,
feed={
"input": input_np,
"label": label_np,
"weight": weight_np
},
fetch_list=[res])
with fluid.dygraph.guard():
bce_loss = paddle.nn.loss.BCELoss(
weight=fluid.dygraph.to_variable(weight_np))
dy_res = bce_loss(
fluid.dygraph.to_variable(input_np),
fluid.dygraph.to_variable(label_np))
dy_result = dy_res.numpy()
expected = np.mean(-1 * weight_np *
(label_np * np.log(input_np) +
(1. - label_np) * np.log(1. - input_np)))
self.assertTrue(np.allclose(static_result, expected))
self.assertTrue(np.allclose(static_result, dy_result))
self.assertTrue(np.allclose(dy_result, expected))
def bce_loss(input, label):
return -1 * (label * np.log(input) + (1. - label) * np.log(1. - input))
class TestBceLossOp(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "bce_loss"
input_np = np.random.uniform(0.1, 0.8, self.shape).astype("float64")
label_np = np.random.randint(0, 2, self.shape).astype("float64")
output_np = bce_loss(input_np, label_np)
self.inputs = {'X': input_np, 'Label': label_np}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
def init_test_case(self):
self.shape = [10, 10]
class TestBceLossOpCase1(OpTest):
def init_test_cast(self):
self.shape = [2, 3, 4, 5]
class TestBceLossOpCase2(OpTest):
def init_test_cast(self):
self.shape = [2, 3, 20]
if __name__ == "__main__":
unittest.main()