You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
148 lines
5.6 KiB
148 lines
5.6 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import numpy as np
|
|
import unittest
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestBCELoss(unittest.TestCase):
|
|
def test_BCELoss(self):
|
|
input_np = np.random.random(size=(20, 30)).astype(np.float64)
|
|
label_np = np.random.random(size=(20, 30)).astype(np.float64)
|
|
prog = fluid.Program()
|
|
startup_prog = fluid.Program()
|
|
places = [fluid.CPUPlace()]
|
|
if fluid.core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
reductions = ['sum', 'mean', 'none']
|
|
for place in places:
|
|
for red in reductions:
|
|
with fluid.program_guard(prog, startup_prog):
|
|
input = fluid.data(
|
|
name='input', shape=[None, 30], dtype='float64')
|
|
label = fluid.data(
|
|
name='label', shape=[None, 30], dtype='float64')
|
|
bce_loss = paddle.nn.loss.BCELoss(reduction=red)
|
|
res = bce_loss(input, label)
|
|
|
|
exe = fluid.Executor(place)
|
|
static_result = exe.run(
|
|
prog,
|
|
feed={"input": input_np,
|
|
"label": label_np},
|
|
fetch_list=[res])
|
|
|
|
with fluid.dygraph.guard():
|
|
bce_loss = paddle.nn.loss.BCELoss(reduction=red)
|
|
dy_res = bce_loss(
|
|
fluid.dygraph.to_variable(input_np),
|
|
fluid.dygraph.to_variable(label_np))
|
|
dy_result = dy_res.numpy()
|
|
|
|
expected = -1 * (label_np * np.log(input_np) +
|
|
(1. - label_np) * np.log(1. - input_np))
|
|
if red == 'mean':
|
|
expected = np.mean(expected)
|
|
elif red == 'sum':
|
|
expected = np.sum(expected)
|
|
else:
|
|
expected = expected
|
|
self.assertTrue(np.allclose(static_result, expected))
|
|
self.assertTrue(np.allclose(static_result, dy_result))
|
|
self.assertTrue(np.allclose(dy_result, expected))
|
|
|
|
def test_BCELoss_weight(self):
|
|
input_np = np.random.random(size=(2, 3, 4, 10)).astype(np.float64)
|
|
label_np = np.random.random(size=(2, 3, 4, 10)).astype(np.float64)
|
|
weight_np = np.random.random(size=(3, 4, 10)).astype(np.float64)
|
|
prog = fluid.Program()
|
|
startup_prog = fluid.Program()
|
|
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
with fluid.program_guard(prog, startup_prog):
|
|
input = fluid.data(
|
|
name='input', shape=[None, 3, 4, 10], dtype='float64')
|
|
label = fluid.data(
|
|
name='label', shape=[None, 3, 4, 10], dtype='float64')
|
|
weight = fluid.data(
|
|
name='weight', shape=[3, 4, 10], dtype='float64')
|
|
bce_loss = paddle.nn.loss.BCELoss(weight=weight)
|
|
res = bce_loss(input, label)
|
|
|
|
exe = fluid.Executor(place)
|
|
static_result = exe.run(prog,
|
|
feed={
|
|
"input": input_np,
|
|
"label": label_np,
|
|
"weight": weight_np
|
|
},
|
|
fetch_list=[res])
|
|
|
|
with fluid.dygraph.guard():
|
|
bce_loss = paddle.nn.loss.BCELoss(
|
|
weight=fluid.dygraph.to_variable(weight_np))
|
|
dy_res = bce_loss(
|
|
fluid.dygraph.to_variable(input_np),
|
|
fluid.dygraph.to_variable(label_np))
|
|
dy_result = dy_res.numpy()
|
|
|
|
expected = np.mean(-1 * weight_np *
|
|
(label_np * np.log(input_np) +
|
|
(1. - label_np) * np.log(1. - input_np)))
|
|
self.assertTrue(np.allclose(static_result, expected))
|
|
self.assertTrue(np.allclose(static_result, dy_result))
|
|
self.assertTrue(np.allclose(dy_result, expected))
|
|
|
|
|
|
def bce_loss(input, label):
|
|
return -1 * (label * np.log(input) + (1. - label) * np.log(1. - input))
|
|
|
|
|
|
class TestBceLossOp(OpTest):
|
|
def setUp(self):
|
|
self.init_test_case()
|
|
self.op_type = "bce_loss"
|
|
input_np = np.random.uniform(0.1, 0.8, self.shape).astype("float64")
|
|
label_np = np.random.randint(0, 2, self.shape).astype("float64")
|
|
output_np = bce_loss(input_np, label_np)
|
|
|
|
self.inputs = {'X': input_np, 'Label': label_np}
|
|
self.outputs = {'Out': output_np}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
def init_test_case(self):
|
|
self.shape = [10, 10]
|
|
|
|
|
|
class TestBceLossOpCase1(OpTest):
|
|
def init_test_cast(self):
|
|
self.shape = [2, 3, 4, 5]
|
|
|
|
|
|
class TestBceLossOpCase2(OpTest):
|
|
def init_test_cast(self):
|
|
self.shape = [2, 3, 20]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|