You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/tensor/creation.py

770 lines
29 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from ..fluid.framework import Variable
from ..fluid.initializer import Constant
from ..fluid.layers import core
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder
from ..fluid.layers import fill_constant
from paddle.common_ops_import import *
import paddle
# TODO: define functions to get create a tensor
from ..fluid.layers import crop_tensor #DEFINE_ALIAS
from ..fluid.layers import diag #DEFINE_ALIAS
from ..fluid.layers import eye #DEFINE_ALIAS
from ..fluid.layers import fill_constant #DEFINE_ALIAS
from ..fluid.layers import create_tensor #DEFINE_ALIAS
from ..fluid.layers import linspace #DEFINE_ALIAS
__all__ = [
'create_tensor',
# 'create_lod_tensor',
# 'create_random_int_lodtensor',
'crop_tensor',
'diag',
'eye',
'fill_constant',
# 'get_tensor_from_selected_rows',
'linspace',
'ones',
'ones_like',
'zeros',
'zeros_like',
'arange',
'eye',
'full',
'full_like',
'triu',
'tril',
'meshgrid'
]
def full_like(x, fill_value, dtype=None, name=None):
"""
:alias_main: paddle.full_like
:alias: paddle.full_like,paddle.tensor.full_like,paddle.tensor.creation.full_like
**full_like**
This function creates a tensor filled with `fill_value` which has identical shape and dtype
with `input`.
Args:
x(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
fill_value(bool|float|int|Variable): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one
of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
data type is the same as input.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
out(Variable): The Tensor variable storing the output.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.enable_imperative() # Now we are in imperative mode
input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
output = paddle.full_like(input, 2.0)
#output result : [array([[2., 2., 2.], [2., 2., 2.]], dtype=float32)]
"""
if dtype is None:
dtype = x.dtype
else:
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype)
helper = LayerHelper("full_like", **locals())
check_dtype(dtype, 'dtype',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'full_like/zeros_like')
out = helper.create_variable_for_type_inference(dtype=dtype)
helper.append_op(
type='fill_any_like',
inputs={'X': [x]},
attrs={'value': fill_value,
"dtype": dtype},
outputs={'Out': [out]})
out.stop_gradient = True
return out
def ones(shape, dtype=None, out=None, device=None):
"""
:alias_main: paddle.ones
:alias: paddle.ones,paddle.tensor.ones,paddle.tensor.creation.ones
The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
Args:
shape(tuple|list): Shape of output tensor.
dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
bool, float16, float32, float64, int32 and int64.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
device(str, optional): Which device to run the operator. The :attr:`device` must be
None,'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in
the paddle program. Default value is False.
Returns:
Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
Examples:
.. code-block:: python
import paddle
data = paddle.ones(shape=[3, 2], dtype='float32') # [[1., 1.], [1., 1.], [1., 1.]]
data = paddle.ones(shape=[2, 2], dtype='float32', device='cpu') # [[1., 1.], [1., 1.]]
"""
check_dtype(dtype, 'create data type',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'zeros')
if device is not None:
if device not in ['cpu', 'gpu']:
raise ValueError(
"The value of 'device' in zeros_op must be cpu or gpu, but received %s."
% (device))
with fluid.device_guard(device):
return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out)
return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out)
def ones_like(input, dtype=None, device=None, name=None):
"""
:alias_main: paddle.ones_like
:alias: paddle.ones_like,paddle.tensor.ones_like,paddle.tensor.creation.ones_like
This function creates a ones tensor which has identical shape and dtype
with `input`.
Args:
input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be
float32, float64, int32, int64.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64.
The default value is None, the dtype is the same as input.
device(str, optional): Which device to run the operator. The :attr:`device` must be
None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in
the paddle program. Default value is None.
name(str, optional): The name of output variable, normally there is no need for user to set this this property.
Default value is None, the framework set the name of output variable.
Returns:
out(Variable): The tensor variable storing the output.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
x = fluid.data(name='x', dtype='float32', shape=[3])
data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0]
data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0]
"""
helper = LayerHelper("zeros_like", **locals())
attrs = {"value": 1.0}
var_dtype = None
if dtype is not None:
check_dtype(
dtype, 'create data type',
['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
'zeros_like')
var_dtype = convert_np_dtype_to_dtype_(dtype)
attrs["dtype"] = var_dtype
else:
var_dtype = input.dtype
out = helper.create_variable_for_type_inference(dtype=var_dtype)
if device is not None:
if device not in ['cpu', 'gpu']:
raise ValueError(
"The value of 'device' in zeros_op must be cpu or gpu, but received %s."
% (device))
with fluid.device_guard(device):
helper.append_op(
type='fill_any_like',
inputs={'X': [input]},
attrs=attrs,
outputs={'Out': [out]})
return out
helper.append_op(
type='fill_any_like',
inputs={'X': [input]},
attrs=attrs,
outputs={'Out': [out]})
out.stop_gradient = True
return out
def zeros(shape, dtype=None, name=None):
"""
:alias_main: paddle.zeros
:alias: paddle.zeros,paddle.tensor.zeros,paddle.tensor.creation.zeros
The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
Args:
shape(tuple|list): Shape of output tensor.
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of output tensor, it supports
bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
Examples:
.. code-block:: python
import paddle
paddle.enable_imperative() # Now we are in imperative mode
data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
data = paddle.zeros(shape=[2, 2], dtype='int32', name='zeros') # [[0, 0], [0, 0]]
"""
if dtype is None:
dtype = 'float32'
return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
def zeros_like(x, dtype=None, name=None):
"""
:alias_main: paddle.zeros_like
:alias: paddle.zeros_like, paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like
This function creates a zeros tensor which has identical shape and dtype
with `input`.
Args:
x(Variable): The input tensor which specifies shape and dtype. The
dtype of input can be bool, float16, float32, float64, int32, int64.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can
be set bool, float16, float32, float64, int32, int64. The default
value is None, the dtype is the same as input.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
out(Variable): The tensor variable storing the output.
Raise:
TypeError: If dtype is not bool, float16, float32, float64, int32 or int64.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.enable_imperative()
x = paddle.imperative.to_variable(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [1.0, 1.0, 1.0]
out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
"""
return full_like(x=x, fill_value=0, dtype=dtype, name=name)
def eye(num_rows,
num_columns=None,
out=None,
dtype='float32',
stop_gradient=True,
name=None):
"""
**eye**
This function constructs an identity tensor.
Args:
num_rows(int): the number of rows in each batch tensor.
num_columns(int, optional): the number of columns in each batch tensor.
If None, default: num_rows.
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
dtype(string, optional): The data type of the returned tensor.
It should be int32, int64, float16, float32, float64.
stop_gradient(bool, optional): Whether stop calculating gradients. Default:True.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
Examples:
.. code-block:: python
import paddle
data = paddle.eye(3, dtype='int32')
# [[1, 0, 0]
# [0, 1, 0]
# [0, 0, 1]]
data = paddle.eye(2, 3, dtype='int32')
# [[1, 0, 0]
# [0, 1, 0]]
"""
helper = LayerHelper("eye", **locals())
if not isinstance(num_rows, int) or num_rows < 0:
raise TypeError("num_rows should be a non-negative int")
if num_columns is not None:
if not isinstance(num_columns, int) or num_columns < 0:
raise TypeError("num_columns should be a non-negative int")
else:
num_columns = num_rows
if out is None:
out = helper.create_variable_for_type_inference(dtype=dtype)
c_dtype = convert_np_dtype_to_dtype_(dtype)
helper.append_op(
type='eye',
inputs={},
outputs={'Out': [out]},
attrs={
'num_rows': num_rows,
'num_columns': num_columns,
'dtype': c_dtype
},
stop_gradient=True)
out.stop_gradient = stop_gradient
return out
def full(shape, fill_value, dtype=None, name=None):
"""
:alias_main: paddle.full
:alias: paddle.full,paddle.tensor.full,paddle.tensor.creation.full
This Op return a Tensor with the `fill_value` which size is same as `shape`
Args:
shape(list|tuple|Variable): Shape of the Tensor to be created.
The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
the elements of it should be integers or Tensors with shape [1].
If ``shape`` is an Variable, it should be an 1-D Tensor .
fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value
used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor.
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
type of created tensor is `float32`
name(str, optional): The default value is None. Normally there is no need for user to set this
property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: Tensor which is created according to shape and dtype.
Raises:
TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64.
TypeError: The `shape` must be one of Variable, list tuple.
Examples:
.. code-block:: python
import paddle
paddle.enable_imperative() # Now we are in imperative mode
data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') # data1=[[0],[0]]
# attr shape is a list which contains Variable Tensor.
positive_2 = paddle.fill_constant([1], "int32", 2)
data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # data3=[1.5, 1.5]
# attr shape is an Variable Tensor.
shape = paddle.fill_constant([2], "int32", 2) # shape=[2,2]
data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) # data4=[[True,True],[True,True]]
# attr value is an Variable Tensor.
val = paddle.fill_constant([1], "float32", 2.0) # val=[2.0]
data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32') #data5=[[2.0],[2.0]]
"""
helper = LayerHelper("full", **locals())
if dtype is None:
dtype = 'float32'
return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
def arange(start=0, end=None, step=1, dtype=None, name=None):
"""
:alias_main: paddle.arange
:alias: paddle.arange,paddle.tensor.arange,paddle.tensor.creation.arange
Return evenly spaced values within a given interval.
Values are generated into the half-open interval [start, stop) with the step.
(the interval including start but excluding stop).
If dtype is float32 or float64, we advise adding a small epsilon to end to
avoid floating point rounding errors when comparing against end.
Parameters:
start(float|int|Variable): Start of interval. The interval includes
this value. If end is None, the half-open interval is [0, start).
If start is Variable, it is a 1-D Tensor with shape [1], and it's
data type should be one of int32, int64, float32, float64. Default
is 0.
end(float|int|Variable, optional): End of interval. The interval does
not include this value. When end is Variable, it is a 1-D Tensor
with shape [1], and it's data type should be one of int32, int64,
float32, float64. If end is None, the half-open interval is [0, start).
Default is None.
step(float|int|Variable, optional): Spacing between values. For any
out, this is the istance between two adjacent values, out[i+1] - out[i].
When end is Variable, it is a 1-D Tensor with shape [1], and it's
data type should be one of int32, int64, float32, float64. Default is 1.
dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
the output tensor, can be float32, float64, int32, int64. If dtype
is `None` , the data type of out tensor is `int64` . Defaule is None
name(str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Default is None.
Returns: a 1-D Tensor which is evenly spaced values within a given interval.
Its data type is set by dtype.
Return type: Variable
Raises:
TypeError: If dtype is not float32, float64, int32 or int64.
examples:
.. code-block:: python
import paddle
import numpy as np
paddle.enable_imperative()
out1 = paddle.arange(5)
# [0, 1, 2, 3, 4]
out2 = paddle.arange(3, 9, 2.0)
# [3, 5, 7]
# use 4.999 instead of 5.0 to avoid floating point rounding errors
out3 = paddle.arange(4.999, dtype='float32')
# [0., 1., 2., 3., 4.]
start_var = paddle.imperative.to_variable(np.array([3]))
out4 = paddle.arange(start_var, 7)
# [3, 4, 5, 6]
"""
if dtype is None:
dtype = 'int64'
if end is None:
end = start
start = 0
return paddle.fluid.layers.range(start, end, step, dtype, name)
def _tril_triu_op(helper):
"""Base op of tril_op and triu_op
"""
op_type = helper.layer_type
x = helper.kwargs.get('input', None)
assert x is not None, 'x cannot be None in {}'.format(op_type)
check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
op_type)
if len(x.shape) < 2:
raise ValueError("input shape in {} must be at least 2-D".format(
op_type))
diagonal = helper.kwargs.get('diagonal', 0)
if not isinstance(diagonal, (int, )):
raise TypeError("diagonal in {} must be a python Int".format(op_type))
name = helper.kwargs.get('name', None)
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="tril_triu",
inputs={"X": x},
attrs={
"diagonal": diagonal,
"lower": True if op_type == 'tril' else False,
},
outputs={"Out": out}, )
return out
def tril(input, diagonal=0, name=None):
"""
:alias_main: paddle.tril
:alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril
This op returns the lower triangular part of a matrix (2-D tensor) or batch
of matrices :attr:`input`, the other elements of the result tensor are set
to 0. The lower triangular part of the matrix is defined as the elements
on and below the diagonal.
Args:
input (Variable): The input variable which is a Tensor.
Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
diagonal (int, optional): The diagonal to consider, default value is 0.
If :attr:`diagonal` = 0, all elements on and below the main diagonal are
retained. A positive value includes just as many diagonals above the main
diagonal, and similarly a negative value excludes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor,
it's data type is the same as input's Tensor.
Raises:
TypeError: diagonal is not a int type.
ValueError: dimension of :attr:`input` is less than 2.
Examples:
.. code-block:: python
import numpy as np
import paddle.tensor as tensor
import paddle.fluid as fluid
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
exe = fluid.Executor(fluid.CPUPlace())
# example 1, default diagonal
tril = tensor.tril(x)
tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[tril], return_numpy=True)
# array([[ 1, 0, 0, 0],
# [ 5, 6, 0, 0],
# [ 9, 10, 11, 0]])
# example 2, positive diagonal value
tril = tensor.tril(x, diagonal=2)
tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[tril], return_numpy=True)
# array([[ 1, 2, 3, 0],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
# example 3, negative diagonal value
tril = tensor.tril(x, diagonal=-1)
tril_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[tril], return_numpy=True)
# array([[ 0, 0, 0, 0],
# [ 5, 0, 0, 0],
# [ 9, 10, 0, 0]])
"""
if in_dygraph_mode():
op = getattr(core.ops, 'tril_triu')
return op(input, 'diagonal', diagonal, "lower", True)
return _tril_triu_op(LayerHelper('tril', **locals()))
def triu(input, diagonal=0, name=None):
"""
:alias_main: paddle.triu
:alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu
This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
:attr:`input`, the other elements of the result tensor are set to 0.
The upper triangular part of the matrix is defined as the elements on and
above the diagonal.
Args:
input (Variable): The input variable which is a Tensor.
Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
diagonal (int, optional): The diagonal to consider, default value is 0.
If :attr:`diagonal` = 0, all elements on and above the main diagonal are
retained. A positive value excludes just as many diagonals above the main
diagonal, and similarly a negative value includes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor,
it's data type is the same as input's Tensor.
Raises:
TypeError: diagonal is not a int type.
ValueError: dimension of :attr:`input` is less than 2.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
import paddle.tensor as tensor
data = np.arange(1, 13, dtype="int64").reshape(3,-1)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12]])
x = fluid.data(shape=(-1, 4), dtype='int64', name='x')
exe = fluid.Executor(fluid.CPUPlace())
# example 1, default diagonal
triu = tensor.triu(x)
triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[triu], return_numpy=True)
# array([[ 1, 2, 3, 4],
# [ 0, 6, 7, 8],
# [ 0, 0, 11, 12]])
# example 2, positive diagonal value
triu = tensor.triu(x, diagonal=2)
triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[triu], return_numpy=True)
# array([[0, 0, 3, 4],
# [0, 0, 0, 8],
# [0, 0, 0, 0]])
# example 3, negative diagonal value
triu = tensor.triu(x, diagonal=-1)
triu_out, = exe.run(fluid.default_main_program(), feed={"x": data},
fetch_list=[triu], return_numpy=True)
# array([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 0, 10, 11, 12]])
"""
if in_dygraph_mode():
op = getattr(core.ops, 'tril_triu')
return op(input, 'diagonal', diagonal, "lower", False)
return _tril_triu_op(LayerHelper('triu', **locals()))
def meshgrid(*args, **kwargs):
"""
:alias_main: paddle.meshgrid
:alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid
This op takes a list of N tensors as input *args, each of which is 1-dimensional
vector, and creates N-dimensional grids.
Args:
*args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
(N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
**kwargs (optional): Currently, we only accept name in **kwargs
The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
x = fluid.data(name='x', shape=[100], dtype='int32')
y = fluid.data(name='y', shape=[200], dtype='int32')
input_1 = np.random.randint(0, 100, [100, ]).astype('int32')
input_2 = np.random.randint(0, 100, [200, ]).astype('int32')
exe = fluid.Executor(place=fluid.CPUPlace())
grid_x, grid_y = paddle.tensor.meshgrid(x, y)
res_1, res_2 = exe.run(fluid.default_main_program(),
feed={'x': input_1,
'y': input_2},
fetch_list=[grid_x, grid_y])
#the shape of res_1 is (100, 200)
#the shape of res_2 is (100, 200)
.. code-block:: python
#example 2: in dygraph mode
import paddle
import numpy as np
paddle.enable_imperative()
input_3 = np.random.randint(0, 100, [100, ]).astype('int32')
input_4 = np.random.randint(0, 100, [200, ]).astype('int32')
tensor_3 = paddle.imperative.to_variable(input_3)
tensor_4 = paddle.imperative.to_variable(input_4)
grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4)
#the shape of grid_x is (100, 200)
#the shape of grid_y is (100, 200)
"""
if len(args) == 1 and isinstance(args[0], (list, tuple)):
args = args[0]
if in_dygraph_mode():
num = len(args)
out = core.ops.meshgrid(list(args), num)
return out
name = kwargs.get("name", None)
helper = LayerHelper('meshgrid', **locals())
if not isinstance(args, (list, tuple)):
raise TypeError("The type of input args in meshgrid should be list.")
for id, input_ in enumerate(args):
check_dtype(input_.dtype, 'create data type',
['float16', 'float32', 'float64', 'int32', 'int64'],
'meshgrid')
num = len(args)
out = [
helper.create_variable_for_type_inference(dtype=args[i].dtype)
for i in range(num)
]
helper.append_op(
type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out})
return out