You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/tests/test_prior_boxes.py

88 lines
2.9 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import paddle.v2.fluid as fluid
import paddle.v2.fluid.layers.detection as detection
import paddle.v2.fluid.core as core
import unittest
def prior_box_output(data_shape):
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
conv1 = fluid.layers.conv2d(
input=images, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
conv2 = fluid.layers.conv2d(
input=conv1, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
conv3 = fluid.layers.conv2d(
input=conv2, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
conv4 = fluid.layers.conv2d(
input=conv3, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
conv5 = fluid.layers.conv2d(
input=conv4, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
box, var = detection.prior_box(
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
image=images,
min_ratio=20,
max_ratio=90,
# steps=[8, 16, 32, 64, 100, 300],
aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
base_size=300,
offset=0.5,
flip=True,
clip=True)
return box, var
def main(use_cuda):
if use_cuda: # prior_box only support CPU.
return
data_shape = [3, 224, 224]
box, var = prior_box_output(data_shape)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
batch = [4] # batch is not used in the prior_box.
assert box.shape[1] == 4
assert var.shape[1] == 4
assert box.shape == var.shape
assert len(box.shape) == 2
for _ in range(1):
x = np.random.random(batch + data_shape).astype("float32")
tensor_x = core.LoDTensor()
tensor_x.set(x, place)
boxes, vars = exe.run(fluid.default_main_program(),
feed={'pixel': tensor_x},
fetch_list=[box, var])
assert vars.shape == var.shape
assert boxes.shape == box.shape
class TestFitALine(unittest.TestCase):
def test_cpu(self):
main(use_cuda=False)
def test_cuda(self):
main(use_cuda=True)
if __name__ == '__main__':
unittest.main()