You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
3.0 KiB
107 lines
3.0 KiB
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifdef PADDLE_WITH_ASCEND_CL
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/operators/activation_op.h"
|
|
#include "paddle/fluid/operators/npu_op_runner.h"
|
|
#include "paddle/fluid/operators/stack_op.h"
|
|
#include "paddle/fluid/operators/unsqueeze_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class StackNPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto x = ctx.MultiInput<Tensor>("X");
|
|
int32_t N = x.size();
|
|
|
|
PADDLE_ENFORCE_GT(
|
|
N, 0, platform::errors::InvalidArgument("number of input Tensor <= 0"));
|
|
|
|
std::vector<paddle::framework::Tensor> x_list;
|
|
for (int i = 0; i < N; i++) {
|
|
x_list.push_back(*x[i]);
|
|
}
|
|
|
|
int axis = ctx.Attr<int>("axis");
|
|
|
|
if (axis < 0) {
|
|
axis = axis + x_list[0].dims().size() + 1;
|
|
}
|
|
auto* out = ctx.Output<Tensor>("Y");
|
|
|
|
auto place = ctx.GetPlace();
|
|
|
|
auto stream =
|
|
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
|
.stream();
|
|
|
|
out->mutable_data<T>(place);
|
|
|
|
if (axis != 0) {
|
|
auto x_dim = x_list[0].dims();
|
|
std::vector<int> vec_dim_tmp;
|
|
vec_dim_tmp.push_back(N);
|
|
for (auto i = 0; i < x_dim.size(); ++i) {
|
|
vec_dim_tmp.push_back(x_dim[i]);
|
|
}
|
|
|
|
Tensor tmp_stack(out->type());
|
|
tmp_stack.Resize(framework::make_ddim(vec_dim_tmp));
|
|
tmp_stack.mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto runner =
|
|
NpuOpRunner("Pack", {x_list}, {tmp_stack}, {{"axis", 0}, {"N", N}});
|
|
runner.Run(stream);
|
|
|
|
std::vector<int64_t> vec_trans;
|
|
for (auto i = 1; i <= x_dim.size(); ++i) {
|
|
vec_trans.push_back(i);
|
|
if (i == axis) {
|
|
vec_trans.push_back(0);
|
|
}
|
|
}
|
|
|
|
auto runner_trans_final =
|
|
NpuOpRunner("TransposeD", {tmp_stack}, {*out}, {{"perm", vec_trans}});
|
|
runner_trans_final.Run(stream);
|
|
|
|
} else {
|
|
auto runner =
|
|
NpuOpRunner("Pack", {x_list}, {*out}, {{"axis", axis}, {"N", N}});
|
|
runner.Run(stream);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_NPU_KERNEL(
|
|
stack, ops::StackNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
|
ops::StackNPUKernel<paddle::platform::NPUDeviceContext,
|
|
paddle::platform::float16>);
|
|
|
|
#endif
|