You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
3.7 KiB
121 lines
3.7 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import unicode_literals
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
import time
|
|
import numpy as np
|
|
|
|
os.environ[str("FLAGS_check_nan_inf")] = str("1")
|
|
os.environ[str("GLOG_vmodule")] = str("nan_inf_utils_detail=10")
|
|
|
|
import paddle.fluid.core as core
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.compat as cpt
|
|
|
|
np.random.seed(0)
|
|
|
|
|
|
def generator():
|
|
batch_size = 5
|
|
for i in range(5):
|
|
curr_train_x = np.random.randint(
|
|
batch_size, size=(batch_size, 3)).astype("float32")
|
|
if i >= 2:
|
|
curr_train_x[0, :] = np.nan
|
|
curr_train_x[-1, :] = np.inf
|
|
res = []
|
|
for i in range(batch_size):
|
|
y = i % 3
|
|
res.append([y])
|
|
y_label = np.array(res).astype('int64')
|
|
yield [curr_train_x, y_label]
|
|
|
|
|
|
def net():
|
|
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
|
|
y = fluid.layers.data(name="y", shape=[1], dtype='int64')
|
|
|
|
# test int64 value
|
|
zero = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
|
|
|
|
# test float16 value
|
|
fp16_zero = fluid.layers.cast(zero, dtype='float16')
|
|
|
|
y = y + zero
|
|
|
|
hidden = x
|
|
|
|
for i in range(2):
|
|
hidden = fluid.layers.fc(input=hidden, size=400, act="sigmoid")
|
|
|
|
hidden = fluid.layers.fc(input=hidden, size=3, act=None)
|
|
cost, y_predict = fluid.layers.softmax_with_cross_entropy(
|
|
hidden, y, return_softmax=True)
|
|
acc_top1 = fluid.layers.accuracy(input=y_predict, label=y, k=1)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.05)
|
|
sgd_optimizer.minimize(avg_cost)
|
|
return y_predict, avg_cost, acc_top1
|
|
|
|
|
|
def check(use_cuda):
|
|
main = fluid.Program()
|
|
startup = fluid.Program()
|
|
scope = fluid.core.Scope()
|
|
|
|
with fluid.scope_guard(scope):
|
|
with fluid.program_guard(main, startup):
|
|
y_predict, avg_cost, acc_top1 = net()
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
exe.run(startup)
|
|
|
|
step = 0.0
|
|
for train_data, y_label in generator():
|
|
outs = exe.run(
|
|
main,
|
|
feed={'x': train_data,
|
|
'y': y_label},
|
|
fetch_list=[y_predict.name, avg_cost.name, acc_top1.name])
|
|
step += 1
|
|
print('iter={:.0f},cost={},acc1={}'.format(step, outs[1][0],
|
|
outs[2][0]))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
if core.is_compiled_with_cuda():
|
|
try:
|
|
check(use_cuda=True)
|
|
assert False
|
|
except Exception as e:
|
|
print(e)
|
|
print(type(e))
|
|
# Note. Enforce in cuda kernel may not catch in paddle, and
|
|
# Exception type will be RuntimeError
|
|
assert type(e) == core.EnforceNotMet or type(e) == RuntimeError
|
|
try:
|
|
check(use_cuda=False)
|
|
assert False
|
|
except Exception as e:
|
|
print(e)
|
|
print(type(e))
|
|
assert type(e) == core.EnforceNotMet
|