You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/dist_fleet_ctr.py

245 lines
8.2 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Distribute CTR model for test fleet api
"""
from __future__ import print_function
import shutil
import tempfile
import time
import paddle
import paddle.fluid as fluid
import os
import numpy as np
import ctr_dataset_reader
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase
from paddle.distributed.fleet.base.util_factory import fleet_util
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
def fake_ctr_reader():
def reader():
for _ in range(1000):
deep = np.random.random_integers(0, 1e5 - 1, size=16).tolist()
wide = np.random.random_integers(0, 1e5 - 1, size=8).tolist()
label = np.random.random_integers(0, 1, size=1).tolist()
yield [deep, wide, label]
return reader
class TestDistCTR2x2(FleetDistRunnerBase):
"""
For test CTR model, using Fleet api
"""
def net(self, args, batch_size=4, lr=0.01):
"""
network definition
Args:
batch_size(int): the size of mini-batch for training
lr(float): learning rate of training
Returns:
avg_cost: LoDTensor of cost.
"""
dnn_input_dim, lr_input_dim = int(1e5), int(1e5)
dnn_data = fluid.layers.data(
name="dnn_data",
shape=[-1, 1],
dtype="int64",
lod_level=1,
append_batch_size=False)
lr_data = fluid.layers.data(
name="lr_data",
shape=[-1, 1],
dtype="int64",
lod_level=1,
append_batch_size=False)
label = fluid.layers.data(
name="click",
shape=[-1, 1],
dtype="int64",
lod_level=0,
append_batch_size=False)
datas = [dnn_data, lr_data, label]
if args.reader == "pyreader":
self.reader = fluid.io.PyReader(
feed_list=datas,
capacity=64,
iterable=False,
use_double_buffer=False)
# build dnn model
dnn_layer_dims = [128, 128, 64, 32, 1]
dnn_embedding = fluid.layers.embedding(
is_distributed=False,
input=dnn_data,
size=[dnn_input_dim, dnn_layer_dims[0]],
param_attr=fluid.ParamAttr(
name="deep_embedding",
initializer=fluid.initializer.Constant(value=0.01)),
is_sparse=True)
dnn_pool = fluid.layers.sequence_pool(
input=dnn_embedding, pool_type="sum")
dnn_out = dnn_pool
for i, dim in enumerate(dnn_layer_dims[1:]):
fc = fluid.layers.fc(
input=dnn_out,
size=dim,
act="relu",
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01)),
name='dnn-fc-%d' % i)
dnn_out = fc
# build lr model
lr_embbding = fluid.layers.embedding(
is_distributed=False,
input=lr_data,
size=[lr_input_dim, 1],
param_attr=fluid.ParamAttr(
name="wide_embedding",
initializer=fluid.initializer.Constant(value=0.01)),
is_sparse=True)
lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")
merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)
predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
acc = fluid.layers.accuracy(input=predict, label=label)
auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
label=label)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
self.feeds = datas
self.train_file_path = ["fake1", "fake2"]
self.avg_cost = avg_cost
self.predict = predict
return avg_cost
def check_model_right(self, dirname):
model_filename = os.path.join(dirname, "__model__")
with open(model_filename, "rb") as f:
program_desc_str = f.read()
program = fluid.Program.parse_from_string(program_desc_str)
with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
wn.write(str(program))
def do_pyreader_training(self, fleet):
"""
do training using dataset, using fetch handler to catch variable
Args:
fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
"""
exe = fluid.Executor(fluid.CPUPlace())
fleet.init_worker()
exe.run(fluid.default_startup_program())
batch_size = 4
train_reader = paddle.batch(fake_ctr_reader(), batch_size=batch_size)
self.reader.decorate_sample_list_generator(train_reader)
for epoch_id in range(1):
self.reader.start()
try:
pass_start = time.time()
while True:
loss_val = exe.run(program=fluid.default_main_program(),
fetch_list=[self.avg_cost.name])
loss_val = np.mean(loss_val)
# TODO(randomly fail)
# reduce_output = fleet_util.all_reduce(
# np.array(loss_val), mode="sum")
# loss_all_trainer = fleet_util.all_gather(float(loss_val))
# loss_val = float(reduce_output) / len(loss_all_trainer)
message = "TRAIN ---> pass: {} loss: {}\n".format(epoch_id,
loss_val)
fleet_util.print_on_rank(message, 0)
pass_time = time.time() - pass_start
except fluid.core.EOFException:
self.reader.reset()
model_dir = tempfile.mkdtemp()
fleet.save_inference_model(
exe, model_dir, [feed.name for feed in self.feeds], self.avg_cost)
self.check_model_right(model_dir)
shutil.rmtree(model_dir)
fleet.stop_worker()
def do_dataset_training(self, fleet):
train_file_list = ctr_dataset_reader.prepare_fake_data()
exe = fluid.Executor(fluid.CPUPlace())
fleet.init_worker()
exe.run(fluid.default_startup_program())
thread_num = 2
batch_size = 128
filelist = train_file_list
# config dataset
dataset = paddle.distributed.fleet.DatasetFactory().create_dataset()
dataset.set_batch_size(batch_size)
dataset.set_use_var(self.feeds)
pipe_command = 'python ctr_dataset_reader.py'
dataset.set_pipe_command(pipe_command)
dataset.set_filelist(filelist)
dataset.set_thread(thread_num)
for epoch_id in range(1):
pass_start = time.time()
dataset.set_filelist(filelist)
exe.train_from_dataset(
program=fluid.default_main_program(),
dataset=dataset,
fetch_list=[self.avg_cost],
fetch_info=["cost"],
print_period=2,
debug=int(os.getenv("Debug", "0")))
pass_time = time.time() - pass_start
if os.getenv("SAVE_MODEL") == "1":
model_dir = tempfile.mkdtemp()
fleet.save_inference_model(exe, model_dir,
[feed.name for feed in self.feeds],
self.avg_cost)
self.check_model_right(model_dir)
shutil.rmtree(model_dir)
fleet.stop_worker()
if __name__ == "__main__":
runtime_main(TestDistCTR2x2)