You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
341 lines
11 KiB
341 lines
11 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import contextlib
|
|
import unittest
|
|
import numpy as np
|
|
import six
|
|
import pickle
|
|
import sys
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.dygraph as dygraph
|
|
from paddle.fluid import core
|
|
from paddle.fluid.optimizer import SGDOptimizer
|
|
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, BatchNorm
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
from paddle.fluid.layer_helper import LayerHelper
|
|
import math
|
|
from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase
|
|
|
|
batch_size = 64
|
|
momentum_rate = 0.9
|
|
l2_decay = 1.2e-4
|
|
|
|
train_parameters = {
|
|
"input_size": [3, 224, 224],
|
|
"input_mean": [0.485, 0.456, 0.406],
|
|
"input_std": [0.229, 0.224, 0.225],
|
|
"learning_strategy": {
|
|
"name": "cosine_decay",
|
|
"batch_size": batch_size,
|
|
"epochs": [40, 80, 100],
|
|
"steps": [0.1, 0.01, 0.001, 0.0001]
|
|
},
|
|
"batch_size": batch_size,
|
|
"lr": 0.0125,
|
|
"total_images": 6149,
|
|
"num_epochs": 200
|
|
}
|
|
|
|
|
|
def optimizer_setting(params, parameter_list=None):
|
|
ls = params["learning_strategy"]
|
|
if "total_images" not in params:
|
|
total_images = 6149
|
|
else:
|
|
total_images = params["total_images"]
|
|
|
|
batch_size = ls["batch_size"]
|
|
step = int(math.ceil(float(total_images) / batch_size))
|
|
bd = [step * e for e in ls["epochs"]]
|
|
lr = params["lr"]
|
|
num_epochs = params["num_epochs"]
|
|
if fluid.in_dygraph_mode():
|
|
optimizer = fluid.optimizer.Momentum(
|
|
learning_rate=fluid.layers.cosine_decay(
|
|
learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
|
|
momentum=momentum_rate,
|
|
regularization=fluid.regularizer.L2Decay(l2_decay),
|
|
parameter_list=parameter_list)
|
|
else:
|
|
optimizer = fluid.optimizer.Momentum(
|
|
learning_rate=fluid.layers.cosine_decay(
|
|
learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
|
|
momentum=momentum_rate,
|
|
regularization=fluid.regularizer.L2Decay(l2_decay))
|
|
|
|
return optimizer
|
|
|
|
|
|
class ConvBNLayer(fluid.dygraph.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
filter_size,
|
|
stride=1,
|
|
groups=1,
|
|
act=None):
|
|
super(ConvBNLayer, self).__init__()
|
|
|
|
self._conv = Conv2D(
|
|
num_channels=num_channels,
|
|
num_filters=num_filters,
|
|
filter_size=filter_size,
|
|
stride=stride,
|
|
padding=(filter_size - 1) // 2,
|
|
groups=groups,
|
|
act=None,
|
|
bias_attr=False)
|
|
|
|
# disable BatchNorm in multi-card. disable LayerNorm because of complex input_shape
|
|
# self._batch_norm = BatchNorm(num_filters, act=act)
|
|
|
|
def forward(self, inputs):
|
|
y = self._conv(inputs)
|
|
# y = self._batch_norm(y)
|
|
|
|
return y
|
|
|
|
|
|
class SqueezeExcitation(fluid.dygraph.Layer):
|
|
def __init__(self, num_channels, reduction_ratio):
|
|
|
|
super(SqueezeExcitation, self).__init__()
|
|
self._num_channels = num_channels
|
|
self._pool = Pool2D(pool_size=0, pool_type='avg', global_pooling=True)
|
|
stdv = 1.0 / math.sqrt(num_channels * 1.0)
|
|
self._squeeze = Linear(
|
|
num_channels,
|
|
num_channels // reduction_ratio,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Uniform(-stdv, stdv)),
|
|
act='relu')
|
|
stdv = 1.0 / math.sqrt(num_channels / 16.0 * 1.0)
|
|
self._excitation = Linear(
|
|
num_channels // reduction_ratio,
|
|
num_channels,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Uniform(-stdv, stdv)),
|
|
act='sigmoid')
|
|
|
|
def forward(self, input):
|
|
y = self._pool(input)
|
|
y = fluid.layers.reshape(y, shape=[-1, self._num_channels])
|
|
y = self._squeeze(y)
|
|
y = self._excitation(y)
|
|
y = fluid.layers.elementwise_mul(x=input, y=y, axis=0)
|
|
return y
|
|
|
|
|
|
class BottleneckBlock(fluid.dygraph.Layer):
|
|
def __init__(self,
|
|
num_channels,
|
|
num_filters,
|
|
stride,
|
|
cardinality,
|
|
reduction_ratio,
|
|
shortcut=True):
|
|
super(BottleneckBlock, self).__init__()
|
|
|
|
self.conv0 = ConvBNLayer(
|
|
num_channels=num_channels,
|
|
num_filters=num_filters,
|
|
filter_size=1,
|
|
act="relu")
|
|
self.conv1 = ConvBNLayer(
|
|
num_channels=num_filters,
|
|
num_filters=num_filters,
|
|
filter_size=3,
|
|
stride=stride,
|
|
groups=cardinality,
|
|
act="relu")
|
|
self.conv2 = ConvBNLayer(
|
|
num_channels=num_filters,
|
|
num_filters=num_filters * 2,
|
|
filter_size=1,
|
|
act=None)
|
|
|
|
self.scale = SqueezeExcitation(
|
|
num_channels=num_filters * 2, reduction_ratio=reduction_ratio)
|
|
|
|
if not shortcut:
|
|
self.short = ConvBNLayer(
|
|
num_channels=num_channels,
|
|
num_filters=num_filters * 2,
|
|
filter_size=1,
|
|
stride=stride)
|
|
|
|
self.shortcut = shortcut
|
|
|
|
self._num_channels_out = num_filters * 2
|
|
|
|
def forward(self, inputs):
|
|
y = self.conv0(inputs)
|
|
conv1 = self.conv1(y)
|
|
conv2 = self.conv2(conv1)
|
|
scale = self.scale(conv2)
|
|
|
|
if self.shortcut:
|
|
short = inputs
|
|
else:
|
|
short = self.short(inputs)
|
|
|
|
y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
|
|
return y
|
|
|
|
|
|
class SeResNeXt(fluid.dygraph.Layer):
|
|
def __init__(self, layers=50, class_dim=102):
|
|
super(SeResNeXt, self).__init__()
|
|
|
|
self.layers = layers
|
|
supported_layers = [50, 101, 152]
|
|
assert layers in supported_layers, \
|
|
"supported layers are {} but input layer is {}".format(supported_layers, layers)
|
|
|
|
if layers == 50:
|
|
cardinality = 32
|
|
reduction_ratio = 16
|
|
depth = [3, 4, 6, 3]
|
|
num_filters = [128, 256, 512, 1024]
|
|
self.conv0 = ConvBNLayer(
|
|
num_channels=3,
|
|
num_filters=64,
|
|
filter_size=7,
|
|
stride=2,
|
|
act='relu')
|
|
self.pool = Pool2D(
|
|
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
|
|
elif layers == 101:
|
|
cardinality = 32
|
|
reduction_ratio = 16
|
|
depth = [3, 4, 23, 3]
|
|
num_filters = [128, 256, 512, 1024]
|
|
self.conv0 = ConvBNLayer(
|
|
num_channels=3,
|
|
num_filters=64,
|
|
filter_size=7,
|
|
stride=2,
|
|
act='relu')
|
|
self.pool = Pool2D(
|
|
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
|
|
elif layers == 152:
|
|
cardinality = 64
|
|
reduction_ratio = 16
|
|
depth = [3, 8, 36, 3]
|
|
num_filters = [128, 256, 512, 1024]
|
|
self.conv0 = ConvBNLayer(
|
|
num_channels=3,
|
|
num_filters=64,
|
|
filter_size=3,
|
|
stride=2,
|
|
act='relu')
|
|
self.conv1 = ConvBNLayer(
|
|
num_channels=64,
|
|
num_filters=64,
|
|
filter_size=3,
|
|
stride=1,
|
|
act='relu')
|
|
self.conv2 = ConvBNLayer(
|
|
num_channels=64,
|
|
num_filters=128,
|
|
filter_size=3,
|
|
stride=1,
|
|
act='relu')
|
|
self.pool = Pool2D(
|
|
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
|
|
|
|
self.bottleneck_block_list = []
|
|
num_channels = 64
|
|
for block in range(len(depth)):
|
|
shortcut = False
|
|
for i in range(depth[block]):
|
|
bottleneck_block = self.add_sublayer(
|
|
'bb_%d_%d' % (block, i),
|
|
BottleneckBlock(
|
|
num_channels=num_channels,
|
|
num_filters=num_filters[block],
|
|
stride=2 if i == 0 and block != 0 else 1,
|
|
cardinality=cardinality,
|
|
reduction_ratio=reduction_ratio,
|
|
shortcut=shortcut))
|
|
num_channels = bottleneck_block._num_channels_out
|
|
self.bottleneck_block_list.append(bottleneck_block)
|
|
shortcut = True
|
|
|
|
self.pool2d_avg = Pool2D(
|
|
pool_size=7, pool_type='avg', global_pooling=True)
|
|
stdv = 1.0 / math.sqrt(2048 * 1.0)
|
|
|
|
self.pool2d_avg_output = num_filters[len(num_filters) - 1] * 2 * 1 * 1
|
|
|
|
self.out = Linear(
|
|
self.pool2d_avg_output,
|
|
class_dim,
|
|
param_attr=fluid.param_attr.ParamAttr(
|
|
initializer=fluid.initializer.Uniform(-stdv, stdv)))
|
|
|
|
def forward(self, inputs):
|
|
if self.layers == 50 or self.layers == 101:
|
|
y = self.conv0(inputs)
|
|
y = self.pool(y)
|
|
elif self.layers == 152:
|
|
y = self.conv0(inputs)
|
|
y = self.conv1(inputs)
|
|
y = self.conv2(inputs)
|
|
y = self.pool(y)
|
|
|
|
for bottleneck_block in self.bottleneck_block_list:
|
|
y = bottleneck_block(y)
|
|
y = self.pool2d_avg(y)
|
|
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
|
|
y = self.out(y)
|
|
return y
|
|
|
|
|
|
class TestSeResNeXt(TestParallelDyGraphRunnerBase):
|
|
def get_model(self):
|
|
model = SeResNeXt()
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.flowers.test(use_xmap=False),
|
|
batch_size=train_parameters["batch_size"],
|
|
drop_last=True)
|
|
optimizer = optimizer_setting(
|
|
train_parameters, parameter_list=model.parameters())
|
|
return model, train_reader, optimizer
|
|
|
|
def run_one_loop(self, model, opt, data):
|
|
bs = len(data)
|
|
dy_x_data = np.array([x[0].reshape(3, 224, 224)
|
|
for x in data]).astype('float32')
|
|
y_data = np.array([x[1] for x in data]).astype('int64').reshape(bs, 1)
|
|
img = to_variable(dy_x_data)
|
|
label = to_variable(y_data)
|
|
label.stop_gradient = True
|
|
|
|
out = model(img)
|
|
softmax_out = fluid.layers.softmax(out, use_cudnn=False)
|
|
loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
return avg_loss
|
|
|
|
|
|
if __name__ == "__main__":
|
|
runtime_main(TestSeResNeXt)
|