You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/parallel_dygraph_se_resnext.py

341 lines
11 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import contextlib
import unittest
import numpy as np
import six
import pickle
import sys
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph as dygraph
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, BatchNorm
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.layer_helper import LayerHelper
import math
from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase
batch_size = 64
momentum_rate = 0.9
l2_decay = 1.2e-4
train_parameters = {
"input_size": [3, 224, 224],
"input_mean": [0.485, 0.456, 0.406],
"input_std": [0.229, 0.224, 0.225],
"learning_strategy": {
"name": "cosine_decay",
"batch_size": batch_size,
"epochs": [40, 80, 100],
"steps": [0.1, 0.01, 0.001, 0.0001]
},
"batch_size": batch_size,
"lr": 0.0125,
"total_images": 6149,
"num_epochs": 200
}
def optimizer_setting(params, parameter_list=None):
ls = params["learning_strategy"]
if "total_images" not in params:
total_images = 6149
else:
total_images = params["total_images"]
batch_size = ls["batch_size"]
step = int(math.ceil(float(total_images) / batch_size))
bd = [step * e for e in ls["epochs"]]
lr = params["lr"]
num_epochs = params["num_epochs"]
if fluid.in_dygraph_mode():
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.cosine_decay(
learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay),
parameter_list=parameter_list)
else:
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.cosine_decay(
learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay))
return optimizer
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=False)
# disable BatchNorm in multi-card. disable LayerNorm because of complex input_shape
# self._batch_norm = BatchNorm(num_filters, act=act)
def forward(self, inputs):
y = self._conv(inputs)
# y = self._batch_norm(y)
return y
class SqueezeExcitation(fluid.dygraph.Layer):
def __init__(self, num_channels, reduction_ratio):
super(SqueezeExcitation, self).__init__()
self._num_channels = num_channels
self._pool = Pool2D(pool_size=0, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
self._squeeze = Linear(
num_channels,
num_channels // reduction_ratio,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)),
act='relu')
stdv = 1.0 / math.sqrt(num_channels / 16.0 * 1.0)
self._excitation = Linear(
num_channels // reduction_ratio,
num_channels,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)),
act='sigmoid')
def forward(self, input):
y = self._pool(input)
y = fluid.layers.reshape(y, shape=[-1, self._num_channels])
y = self._squeeze(y)
y = self._excitation(y)
y = fluid.layers.elementwise_mul(x=input, y=y, axis=0)
return y
class BottleneckBlock(fluid.dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
cardinality,
reduction_ratio,
shortcut=True):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act="relu")
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality,
act="relu")
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 2,
filter_size=1,
act=None)
self.scale = SqueezeExcitation(
num_channels=num_filters * 2, reduction_ratio=reduction_ratio)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 2,
filter_size=1,
stride=stride)
self.shortcut = shortcut
self._num_channels_out = num_filters * 2
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
scale = self.scale(conv2)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
return y
class SeResNeXt(fluid.dygraph.Layer):
def __init__(self, layers=50, class_dim=102):
super(SeResNeXt, self).__init__()
self.layers = layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 6, 3]
num_filters = [128, 256, 512, 1024]
self.conv0 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
self.pool = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
elif layers == 101:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 23, 3]
num_filters = [128, 256, 512, 1024]
self.conv0 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
self.pool = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
elif layers == 152:
cardinality = 64
reduction_ratio = 16
depth = [3, 8, 36, 3]
num_filters = [128, 256, 512, 1024]
self.conv0 = ConvBNLayer(
num_channels=3,
num_filters=64,
filter_size=3,
stride=2,
act='relu')
self.conv1 = ConvBNLayer(
num_channels=64,
num_filters=64,
filter_size=3,
stride=1,
act='relu')
self.conv2 = ConvBNLayer(
num_channels=64,
num_filters=128,
filter_size=3,
stride=1,
act='relu')
self.pool = Pool2D(
pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
self.bottleneck_block_list = []
num_channels = 64
for block in range(len(depth)):
shortcut = False
for i in range(depth[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
reduction_ratio=reduction_ratio,
shortcut=shortcut))
num_channels = bottleneck_block._num_channels_out
self.bottleneck_block_list.append(bottleneck_block)
shortcut = True
self.pool2d_avg = Pool2D(
pool_size=7, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(2048 * 1.0)
self.pool2d_avg_output = num_filters[len(num_filters) - 1] * 2 * 1 * 1
self.out = Linear(
self.pool2d_avg_output,
class_dim,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv)))
def forward(self, inputs):
if self.layers == 50 or self.layers == 101:
y = self.conv0(inputs)
y = self.pool(y)
elif self.layers == 152:
y = self.conv0(inputs)
y = self.conv1(inputs)
y = self.conv2(inputs)
y = self.pool(y)
for bottleneck_block in self.bottleneck_block_list:
y = bottleneck_block(y)
y = self.pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
y = self.out(y)
return y
class TestSeResNeXt(TestParallelDyGraphRunnerBase):
def get_model(self):
model = SeResNeXt()
train_reader = paddle.batch(
paddle.dataset.flowers.test(use_xmap=False),
batch_size=train_parameters["batch_size"],
drop_last=True)
optimizer = optimizer_setting(
train_parameters, parameter_list=model.parameters())
return model, train_reader, optimizer
def run_one_loop(self, model, opt, data):
bs = len(data)
dy_x_data = np.array([x[0].reshape(3, 224, 224)
for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(bs, 1)
img = to_variable(dy_x_data)
label = to_variable(y_data)
label.stop_gradient = True
out = model(img)
softmax_out = fluid.layers.softmax(out, use_cudnn=False)
loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
avg_loss = fluid.layers.mean(x=loss)
return avg_loss
if __name__ == "__main__":
runtime_main(TestSeResNeXt)