You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
5.4 KiB
164 lines
5.4 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
class TestAdadeltaOp1(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "adadelta"
|
|
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
# The squared gradient is positive
|
|
avg_squared_grad = np.random.random((102, 105)).astype("float32")
|
|
# The squared update is positive
|
|
avg_squared_update = np.random.random((102, 105)).astype("float32")
|
|
|
|
rho = 0.95
|
|
epsilon = 1e-6
|
|
|
|
self.inputs = {
|
|
'Param': param,
|
|
'Grad': grad,
|
|
'AvgSquaredGrad': avg_squared_grad,
|
|
'AvgSquaredUpdate': avg_squared_update
|
|
}
|
|
|
|
self.attrs = {'rho': rho, 'epsilon': epsilon}
|
|
|
|
avg_squared_grad_out = rho * avg_squared_grad + \
|
|
(1 - rho) * np.square(grad)
|
|
update = -np.multiply(
|
|
np.sqrt(
|
|
np.divide(avg_squared_update + epsilon, avg_squared_grad_out +
|
|
epsilon)), grad)
|
|
|
|
avg_squared_update_out = rho * avg_squared_update + \
|
|
(1 - rho) * np.square(update)
|
|
|
|
param_out = param + update
|
|
|
|
self.outputs = {
|
|
'ParamOut': param_out,
|
|
'AvgSquaredGradOut': avg_squared_grad_out,
|
|
'AvgSquaredUpdateOut': avg_squared_update_out
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestAdadeltaOp2(OpTest):
|
|
'''Test Adadelta op with default attribute values
|
|
'''
|
|
|
|
def setUp(self):
|
|
self.op_type = "adadelta"
|
|
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
|
# The squared gradient is positive
|
|
avg_squared_grad = np.random.random((102, 105)).astype("float32")
|
|
# The squared update is positive
|
|
avg_squared_update = np.random.random((102, 105)).astype("float32")
|
|
|
|
rho = 0.95
|
|
epsilon = 1e-6
|
|
|
|
self.inputs = {
|
|
'Param': param,
|
|
'Grad': grad,
|
|
'AvgSquaredGrad': avg_squared_grad,
|
|
'AvgSquaredUpdate': avg_squared_update
|
|
}
|
|
|
|
avg_squared_grad_out = rho * avg_squared_grad + \
|
|
(1 - rho) * np.square(grad)
|
|
update = -np.multiply(
|
|
np.sqrt(
|
|
np.divide(avg_squared_update + epsilon, avg_squared_grad_out +
|
|
epsilon)), grad)
|
|
|
|
avg_squared_update_out = rho * avg_squared_update + \
|
|
(1 - rho) * np.square(update)
|
|
|
|
param_out = param + update
|
|
|
|
self.outputs = {
|
|
'ParamOut': param_out,
|
|
'AvgSquaredGradOut': avg_squared_grad_out,
|
|
'AvgSquaredUpdateOut': avg_squared_update_out
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestAdadeltaV2(unittest.TestCase):
|
|
def test_adadelta_dygraph(self):
|
|
paddle.disable_static(paddle.CPUPlace())
|
|
value = np.arange(26).reshape(2, 13).astype("float32")
|
|
a = paddle.to_tensor(value)
|
|
linear = paddle.nn.Linear(13, 5)
|
|
# This can be any optimizer supported by dygraph.
|
|
adam = paddle.optimizer.Adadelta(
|
|
learning_rate=0.01,
|
|
parameters=linear.parameters(),
|
|
weight_decay=0.01)
|
|
out = linear(a)
|
|
out.backward()
|
|
adam.step()
|
|
adam.clear_gradients()
|
|
|
|
def test_adadelta(self):
|
|
place = fluid.CPUPlace()
|
|
main = fluid.Program()
|
|
with fluid.program_guard(main):
|
|
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
y_predict = fluid.layers.fc(input=x, size=1, act=None)
|
|
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
rms_optimizer = paddle.optimizer.Adadelta(learning_rate=0.1)
|
|
rms_optimizer.minimize(avg_cost)
|
|
|
|
fetch_list = [avg_cost]
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.uci_housing.train(), batch_size=1)
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
|
|
exe = fluid.Executor(place)
|
|
exe.run(fluid.default_startup_program())
|
|
for data in train_reader():
|
|
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
|
|
|
|
def test_raise_error(self):
|
|
self.assertRaises(ValueError, paddle.optimizer.Adadelta, None)
|
|
self.assertRaises(
|
|
ValueError, paddle.optimizer.Adadelta, learning_rate=0.1, rho=None)
|
|
self.assertRaises(
|
|
ValueError,
|
|
paddle.optimizer.Adadelta,
|
|
learning_rate=0.1,
|
|
epsilon=None)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|