You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.4 KiB
95 lines
3.4 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import paddle
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
class TestAdamWOp(unittest.TestCase):
|
|
def test_adamw_op_dygraph(self):
|
|
paddle.disable_static()
|
|
value = np.arange(26).reshape(2, 13).astype("float32")
|
|
a = paddle.to_variable(value)
|
|
linear = paddle.nn.Linear(13, 5)
|
|
adam = paddle.optimizer.AdamW(
|
|
learning_rate=0.01,
|
|
parameters=linear.parameters(),
|
|
apply_decay_param_fun=lambda name: True,
|
|
weight_decay=0.01)
|
|
out = linear(a)
|
|
out.backward()
|
|
adam.step()
|
|
adam.clear_gradients()
|
|
|
|
def test_adamw_op_coverage(self):
|
|
paddle.disable_static()
|
|
value = np.arange(26).reshape(2, 13).astype("float32")
|
|
a = paddle.to_variable(value)
|
|
linear = paddle.nn.Linear(13, 5)
|
|
adam = paddle.optimizer.AdamW(
|
|
learning_rate=0.0,
|
|
parameters=linear.parameters(),
|
|
apply_decay_param_fun=lambda name: True,
|
|
weight_decay=0.01)
|
|
assert (adam.__str__() is not None)
|
|
|
|
def test_adamw_op(self):
|
|
place = fluid.CPUPlace()
|
|
shape = [2, 3, 8, 8]
|
|
exe = fluid.Executor(place)
|
|
train_prog = fluid.Program()
|
|
startup = fluid.Program()
|
|
with fluid.program_guard(train_prog, startup):
|
|
with fluid.unique_name.guard():
|
|
data = fluid.data(name="data", shape=shape)
|
|
conv = fluid.layers.conv2d(data, 8, 3)
|
|
loss = paddle.mean(conv)
|
|
|
|
beta1 = fluid.layers.create_global_var(
|
|
shape=[1], value=0.85, dtype='float32', persistable=True)
|
|
beta2 = fluid.layers.create_global_var(
|
|
shape=[1], value=0.95, dtype='float32', persistable=True)
|
|
betas = [beta1, beta2]
|
|
opt = paddle.optimizer.AdamW(
|
|
learning_rate=1e-5,
|
|
beta1=beta1,
|
|
beta2=beta2,
|
|
weight_decay=0.01,
|
|
epsilon=1e-8)
|
|
opt.minimize(loss)
|
|
|
|
exe.run(startup)
|
|
data_np = np.random.random(shape).astype('float32')
|
|
rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
|
|
assert rets[0] is not None
|
|
|
|
def test_adamw_op_invalid_input(self):
|
|
paddle.disable_static()
|
|
linear = paddle.nn.Linear(10, 10)
|
|
with self.assertRaises(ValueError):
|
|
adam = paddle.optimizer.AdamW(
|
|
0.1, beta1=-1, parameters=linear.parameters())
|
|
with self.assertRaises(ValueError):
|
|
adam = paddle.optimizer.AdamW(
|
|
0.1, beta2=-1, parameters=linear.parameters())
|
|
with self.assertRaises(ValueError):
|
|
adam = paddle.optimizer.AdamW(
|
|
0.1, epsilon=-1, parameters=linear.parameters())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|