You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
5.5 KiB
186 lines
5.5 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
import time
|
|
import threading
|
|
import subprocess
|
|
import unittest
|
|
import numpy
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.distributed.fleet.base.role_maker as role_maker
|
|
import paddle.distributed.fleet as fleet
|
|
|
|
|
|
class TestCommunicatorGeoEnd2End(unittest.TestCase):
|
|
def net(self):
|
|
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
|
x1 = fluid.layers.data(name='x1', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
emb = fluid.layers.embedding(
|
|
input=x1,
|
|
size=[10000, 10],
|
|
param_attr=fluid.ParamAttr(
|
|
name="embedding",
|
|
initializer=fluid.initializer.Constant(value=0.01)),
|
|
is_sparse=True)
|
|
|
|
pool = fluid.layers.sequence_pool(input=emb, pool_type="sum")
|
|
z = fluid.layers.concat(input=[x, pool], axis=1)
|
|
y_predict = fluid.layers.fc(input=z, size=1, act=None)
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
|
|
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
return avg_cost, x, x1, y
|
|
|
|
def fake_reader(self):
|
|
def reader():
|
|
for i in range(10000):
|
|
x = numpy.random.random((1, 13)).astype('float32')
|
|
z = numpy.random.randint(0, 9999, (1, 1)).astype('int64')
|
|
y = numpy.random.randint(0, 2, (1, 1)).astype('int64')
|
|
yield x, z, y
|
|
|
|
return reader
|
|
|
|
def run_pserver(self, role, strategy):
|
|
fleet.init(role)
|
|
avg_cost, x, z, y = self.net()
|
|
optimizer = fluid.optimizer.SGD(0.01)
|
|
optimizer = fleet.distributed_optimizer(optimizer, strategy)
|
|
optimizer.minimize(avg_cost)
|
|
|
|
fleet.init_server()
|
|
fleet.run_server()
|
|
|
|
def run_trainer(self, role, strategy):
|
|
place = fluid.core.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
fleet.init(role)
|
|
avg_cost, x, z, y = self.net()
|
|
optimizer = fluid.optimizer.SGD(0.01)
|
|
optimizer = fleet.distributed_optimizer(optimizer, strategy)
|
|
optimizer.minimize(avg_cost)
|
|
|
|
fleet.init_worker()
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
train_reader = paddle.batch(self.fake_reader(), batch_size=24)
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[x, z, y])
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
exe.run(fluid.default_main_program(),
|
|
feed=feeder.feed(data),
|
|
fetch_list=[])
|
|
|
|
fleet.stop_worker()
|
|
|
|
def run_ut(self):
|
|
training_role = os.getenv("TRAINING_ROLE", "TRAINER")
|
|
|
|
os.environ["PADDLE_PSERVER_NUMS"] = "1"
|
|
os.environ["PADDLE_TRAINERS_NUM"] = "1"
|
|
os.environ["POD_IP"] = "127.0.0.1"
|
|
os.environ["PADDLE_PORT"] = "36001"
|
|
os.environ["PADDLE_TRAINER_ID"] = "0"
|
|
os.environ["PADDLE_TRAINERS_NUM"] = "1"
|
|
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
|
|
"127.0.0.1:36001"
|
|
|
|
role = role_maker.PaddleCloudRoleMaker()
|
|
|
|
strategy = paddle.distributed.fleet.DistributedStrategy()
|
|
strategy.a_sync = True
|
|
strategy.a_sync_configs = {"k_steps": 100}
|
|
|
|
if training_role == "TRAINER":
|
|
self.run_trainer(role, strategy)
|
|
else:
|
|
self.run_pserver(role, strategy)
|
|
|
|
def test_communicator(self):
|
|
run_server_cmd = """
|
|
from __future__ import print_function
|
|
|
|
import sys
|
|
import os
|
|
|
|
import time
|
|
import threading
|
|
import subprocess
|
|
import unittest
|
|
import numpy
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
|
|
from paddle.fluid.communicator import Communicator
|
|
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
|
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
|
|
import paddle.distributed.fleet as fleet
|
|
|
|
from test_communicator_geo import TestCommunicatorGeoEnd2End
|
|
|
|
|
|
class RunServer(TestCommunicatorGeoEnd2End):
|
|
def runTest(self):
|
|
pass
|
|
|
|
os.environ["TRAINING_ROLE"] = "PSERVER"
|
|
os.environ["http_proxy"] = ""
|
|
os.environ["https_proxy"] = ""
|
|
|
|
half_run_server = RunServer()
|
|
half_run_server.run_ut()
|
|
"""
|
|
|
|
server_file = "run_server_for_communicator_geo.py"
|
|
with open(server_file, "w") as wb:
|
|
wb.write(run_server_cmd)
|
|
os.environ["TRAINING_ROLE"] = "PSERVER"
|
|
os.environ["http_proxy"] = ""
|
|
os.environ["https_proxy"] = ""
|
|
|
|
_python = sys.executable
|
|
|
|
ps_cmd = "{} {}".format(_python, server_file)
|
|
ps_proc = subprocess.Popen(
|
|
ps_cmd.strip().split(" "),
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE)
|
|
|
|
time.sleep(5)
|
|
|
|
os.environ["TRAINING_ROLE"] = "TRAINER"
|
|
os.environ["http_proxy"] = ""
|
|
os.environ["https_proxy"] = ""
|
|
|
|
self.run_ut()
|
|
ps_proc.kill()
|
|
|
|
if os.path.exists(server_file):
|
|
os.remove(server_file)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|