You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_communicator_geo.py

186 lines
5.5 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import sys
import time
import threading
import subprocess
import unittest
import numpy
import paddle
import paddle.fluid as fluid
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet
class TestCommunicatorGeoEnd2End(unittest.TestCase):
def net(self):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
x1 = fluid.layers.data(name='x1', shape=[1], dtype='int64', lod_level=1)
emb = fluid.layers.embedding(
input=x1,
size=[10000, 10],
param_attr=fluid.ParamAttr(
name="embedding",
initializer=fluid.initializer.Constant(value=0.01)),
is_sparse=True)
pool = fluid.layers.sequence_pool(input=emb, pool_type="sum")
z = fluid.layers.concat(input=[x, pool], axis=1)
y_predict = fluid.layers.fc(input=z, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
return avg_cost, x, x1, y
def fake_reader(self):
def reader():
for i in range(10000):
x = numpy.random.random((1, 13)).astype('float32')
z = numpy.random.randint(0, 9999, (1, 1)).astype('int64')
y = numpy.random.randint(0, 2, (1, 1)).astype('int64')
yield x, z, y
return reader
def run_pserver(self, role, strategy):
fleet.init(role)
avg_cost, x, z, y = self.net()
optimizer = fluid.optimizer.SGD(0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(avg_cost)
fleet.init_server()
fleet.run_server()
def run_trainer(self, role, strategy):
place = fluid.core.CPUPlace()
exe = fluid.Executor(place)
fleet.init(role)
avg_cost, x, z, y = self.net()
optimizer = fluid.optimizer.SGD(0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(avg_cost)
fleet.init_worker()
exe.run(fluid.default_startup_program())
train_reader = paddle.batch(self.fake_reader(), batch_size=24)
feeder = fluid.DataFeeder(place=place, feed_list=[x, z, y])
for batch_id, data in enumerate(train_reader()):
exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[])
fleet.stop_worker()
def run_ut(self):
training_role = os.getenv("TRAINING_ROLE", "TRAINER")
os.environ["PADDLE_PSERVER_NUMS"] = "1"
os.environ["PADDLE_TRAINERS_NUM"] = "1"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["PADDLE_TRAINER_ID"] = "0"
os.environ["PADDLE_TRAINERS_NUM"] = "1"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
"127.0.0.1:36001"
role = role_maker.PaddleCloudRoleMaker()
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = True
strategy.a_sync_configs = {"k_steps": 100}
if training_role == "TRAINER":
self.run_trainer(role, strategy)
else:
self.run_pserver(role, strategy)
def test_communicator(self):
run_server_cmd = """
from __future__ import print_function
import sys
import os
import time
import threading
import subprocess
import unittest
import numpy
import paddle
import paddle.fluid as fluid
from paddle.fluid.communicator import Communicator
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
import paddle.distributed.fleet as fleet
from test_communicator_geo import TestCommunicatorGeoEnd2End
class RunServer(TestCommunicatorGeoEnd2End):
def runTest(self):
pass
os.environ["TRAINING_ROLE"] = "PSERVER"
os.environ["http_proxy"] = ""
os.environ["https_proxy"] = ""
half_run_server = RunServer()
half_run_server.run_ut()
"""
server_file = "run_server_for_communicator_geo.py"
with open(server_file, "w") as wb:
wb.write(run_server_cmd)
os.environ["TRAINING_ROLE"] = "PSERVER"
os.environ["http_proxy"] = ""
os.environ["https_proxy"] = ""
_python = sys.executable
ps_cmd = "{} {}".format(_python, server_file)
ps_proc = subprocess.Popen(
ps_cmd.strip().split(" "),
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
time.sleep(5)
os.environ["TRAINING_ROLE"] = "TRAINER"
os.environ["http_proxy"] = ""
os.environ["https_proxy"] = ""
self.run_ut()
ps_proc.kill()
if os.path.exists(server_file):
os.remove(server_file)
if __name__ == '__main__':
unittest.main()