You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_cross_op.py

139 lines
4.8 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestCrossOp(OpTest):
def setUp(self):
self.op_type = "cross"
self.initTestCase()
self.inputs = {
'X': np.random.random(self.shape).astype(self.dtype),
'Y': np.random.random(self.shape).astype(self.dtype)
}
self.init_output()
def initTestCase(self):
self.attrs = {'dim': -2}
self.dtype = np.float64
self.shape = (1024, 3, 1)
def init_output(self):
x = np.squeeze(self.inputs['X'], 2)
y = np.squeeze(self.inputs['Y'], 2)
z_list = []
for i in range(1024):
z_list.append(np.cross(x[i], y[i]))
self.outputs = {'Out': np.array(z_list).reshape(self.shape)}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out')
class TestCrossOpCase1(TestCrossOp):
def initTestCase(self):
self.shape = (2048, 3)
self.dtype = np.float32
def init_output(self):
z_list = []
for i in range(2048):
z_list.append(np.cross(self.inputs['X'][i], self.inputs['Y'][i]))
self.outputs = {'Out': np.array(z_list).reshape(self.shape)}
class TestCrossAPI(unittest.TestCase):
def input_data(self):
self.data_x = np.array(
[[1.0, 1.0, 1.0], [2.0, 2.0, 2.0], [3.0, 3.0, 3.0]])
self.data_y = np.array(
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
def test_cross_api(self):
self.input_data()
# case 1:
with program_guard(Program(), Program()):
x = fluid.layers.data(name='x', shape=[-1, 3])
y = fluid.layers.data(name='y', shape=[-1, 3])
z = paddle.cross(x, y, axis=1)
exe = fluid.Executor(fluid.CPUPlace())
res, = exe.run(feed={'x': self.data_x,
'y': self.data_y},
fetch_list=[z.name],
return_numpy=False)
expect_out = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]])
self.assertTrue(np.allclose(expect_out, np.array(res)))
# case 2:
with program_guard(Program(), Program()):
x = fluid.layers.data(name='x', shape=[-1, 3])
y = fluid.layers.data(name='y', shape=[-1, 3])
z = paddle.cross(x, y)
exe = fluid.Executor(fluid.CPUPlace())
res, = exe.run(feed={'x': self.data_x,
'y': self.data_y},
fetch_list=[z.name],
return_numpy=False)
expect_out = np.array([[-1.0, -1.0, -1.0], [2.0, 2.0, 2.0],
[-1.0, -1.0, -1.0]])
self.assertTrue(np.allclose(expect_out, np.array(res)))
# case 3:
with program_guard(Program(), Program()):
x = fluid.data(name="x", shape=[-1, 3], dtype="float32")
y = fluid.data(name='y', shape=[-1, 3], dtype='float32')
y_1 = paddle.cross(x, y, name='result')
self.assertEqual(('result' in y_1.name), True)
def test_dygraph_api(self):
self.input_data()
# case 1:
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(self.data_x)
y = fluid.dygraph.to_variable(self.data_y)
z = paddle.cross(x, y)
np_z = z.numpy()
expect_out = np.array([[-1.0, -1.0, -1.0], [2.0, 2.0, 2.0],
[-1.0, -1.0, -1.0]])
self.assertTrue(np.allclose(expect_out, np_z))
# case 2:
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(self.data_x)
y = fluid.dygraph.to_variable(self.data_y)
z = paddle.cross(x, y, axis=1)
np_z = z.numpy()
expect_out = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]])
self.assertTrue(np.allclose(expect_out, np_z))
if __name__ == '__main__':
unittest.main()