You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_cudnn_lstmcell.py

258 lines
9.4 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.dygraph import LSTMCell
import numpy as np
np.random.seed = 123
def sigmoid(x):
return 1. / (1. + np.exp(-x))
def tanh(x):
return 2. * sigmoid(2. * x) - 1.
def non_cudnn_step(step_in,
pre_hidden,
pre_cell,
gate_w,
gate_b,
forget_bias=1.0):
concat_1 = np.concatenate([step_in, pre_hidden], 1)
gate_input = np.matmul(concat_1, gate_w)
gate_input += gate_b
i, j, f, o = np.split(gate_input, indices_or_sections=4, axis=1)
new_cell = pre_cell * sigmoid(f + forget_bias) + sigmoid(i) * tanh(j)
new_hidden = tanh(new_cell) * sigmoid(o)
return new_hidden, new_cell
def cudnn_step(step_input_np, pre_hidden_np, pre_cell_np, weight_ih, bias_ih,
weight_hh, bias_hh):
igates = np.matmul(step_input_np, weight_ih.transpose(1, 0))
igates = igates + bias_ih
hgates = np.matmul(pre_hidden_np, weight_hh.transpose(1, 0))
hgates = hgates + bias_hh
chunked_igates = np.split(igates, indices_or_sections=4, axis=1)
chunked_hgates = np.split(hgates, indices_or_sections=4, axis=1)
ingate = chunked_igates[0] + chunked_hgates[0]
ingate = sigmoid(ingate)
forgetgate = chunked_igates[1] + chunked_hgates[1]
forgetgate = sigmoid(forgetgate)
cellgate = chunked_igates[2] + chunked_hgates[2]
cellgate = tanh(cellgate)
outgate = chunked_igates[3] + chunked_hgates[3]
outgate = sigmoid(outgate)
new_cell = (forgetgate * pre_cell_np) + (ingate * cellgate)
new_hidden = outgate * tanh(new_cell)
return new_hidden, new_cell
class TestCudnnLSTM(unittest.TestCase):
def setUp(self):
self.input_size = 100
self.hidden_size = 200
self.batch_size = 128
def test_run(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
with fluid.dygraph.guard(place):
param_attr = fluid.ParamAttr(name="param_attr")
bias_attr = fluid.ParamAttr(name="bias_attr")
named_cudnn_lstm = LSTMCell(self.hidden_size, self.input_size,
param_attr, bias_attr)
cudnn_lstm = LSTMCell(self.hidden_size, self.input_size)
param_list = cudnn_lstm.state_dict()
named_param_list = named_cudnn_lstm.state_dict()
# process weight and bias
weight_ih_name = "_weight_ih"
bias_ih_name = "_bias_ih"
weight_hh_name = "_weight_hh"
bias_hh_name = "_bias_hh"
weight_ih = param_list[weight_ih_name].numpy()
weight_ih = np.random.uniform(
-0.1, 0.1, size=weight_ih.shape).astype('float64')
param_list[weight_ih_name].set_value(weight_ih)
named_param_list[weight_ih_name].set_value(weight_ih)
bias_ih = param_list[bias_ih_name].numpy()
bias_ih = np.random.uniform(
-0.1, 0.1, size=bias_ih.shape).astype('float64')
param_list[bias_ih_name].set_value(bias_ih)
named_param_list[bias_ih_name].set_value(bias_ih)
weight_hh = param_list[weight_hh_name].numpy()
weight_hh = np.random.uniform(
-0.1, 0.1, size=weight_hh.shape).astype('float64')
param_list[weight_hh_name].set_value(weight_hh)
named_param_list[weight_hh_name].set_value(weight_hh)
bias_hh = param_list[bias_hh_name].numpy()
bias_hh = np.random.uniform(
-0.1, 0.1, size=bias_hh.shape).astype('float64')
param_list[bias_hh_name].set_value(bias_hh)
named_param_list[bias_hh_name].set_value(bias_hh)
step_input_np = np.random.uniform(-0.1, 0.1, (
self.batch_size, self.input_size)).astype('float64')
pre_hidden_np = np.random.uniform(-0.1, 0.1, (
self.batch_size, self.hidden_size)).astype('float64')
pre_cell_np = np.random.uniform(-0.1, 0.1, (
self.batch_size, self.hidden_size)).astype('float64')
step_input_var = fluid.dygraph.to_variable(step_input_np)
pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np)
pre_cell_var = fluid.dygraph.to_variable(pre_cell_np)
api_out = cudnn_lstm(step_input_var, pre_hidden_var, pre_cell_var)
named_api_out = named_cudnn_lstm(step_input_var, pre_hidden_var,
pre_cell_var)
api_hidden_out = api_out[0]
api_cell_out = api_out[1]
named_api_hidden_out = named_api_out[0]
named_api_cell_out = named_api_out[1]
np_hidden_out, np_cell_out = cudnn_step(
step_input_np, pre_hidden_np, pre_cell_np, weight_ih, bias_ih,
weight_hh, bias_hh)
self.assertTrue(
np.allclose(
api_hidden_out.numpy(), np_hidden_out, rtol=1e-5, atol=0))
self.assertTrue(
np.allclose(
api_cell_out.numpy(), np_cell_out, rtol=1e-5, atol=0))
self.assertTrue(
np.allclose(
named_api_hidden_out.numpy(),
np_hidden_out,
rtol=1e-5,
atol=0))
self.assertTrue(
np.allclose(
named_api_cell_out.numpy(), np_cell_out, rtol=1e-5, atol=0))
class TestNonCudnnLSTM(unittest.TestCase):
def setUp(self):
self.input_size = 100
self.hidden_size = 200
self.batch_size = 128
def test_run(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
with fluid.dygraph.guard(place):
param_attr = fluid.ParamAttr(name="param_attr")
bias_attr = fluid.ParamAttr(name="bias_attr")
named_cudnn_lstm = LSTMCell(
self.hidden_size,
self.input_size,
param_attr,
bias_attr,
use_cudnn_impl=False)
cudnn_lstm = LSTMCell(
self.hidden_size, self.input_size, use_cudnn_impl=False)
param_list = cudnn_lstm.state_dict()
named_param_list = named_cudnn_lstm.state_dict()
# process weight and bias
gate_w_name = "_weight"
gate_b_name = "_bias"
gate_w = param_list[gate_w_name].numpy()
gate_w = np.random.uniform(
-0.1, 0.1, size=gate_w.shape).astype('float64')
param_list[gate_w_name].set_value(gate_w)
named_param_list[gate_w_name].set_value(gate_w)
gate_b = param_list[gate_b_name].numpy()
gate_b = np.random.uniform(
-0.1, 0.1, size=gate_b.shape).astype('float64')
param_list[gate_b_name].set_value(gate_b)
named_param_list[gate_b_name].set_value(gate_b)
step_input_np = np.random.uniform(-0.1, 0.1, (
self.batch_size, self.input_size)).astype('float64')
pre_hidden_np = np.random.uniform(-0.1, 0.1, (
self.batch_size, self.hidden_size)).astype('float64')
pre_cell_np = np.random.uniform(-0.1, 0.1, (
self.batch_size, self.hidden_size)).astype('float64')
step_input_var = fluid.dygraph.to_variable(step_input_np)
pre_hidden_var = fluid.dygraph.to_variable(pre_hidden_np)
pre_cell_var = fluid.dygraph.to_variable(pre_cell_np)
api_out = cudnn_lstm(step_input_var, pre_hidden_var, pre_cell_var)
named_api_out = named_cudnn_lstm(step_input_var, pre_hidden_var,
pre_cell_var)
api_hidden_out = api_out[0]
api_cell_out = api_out[1]
named_api_hidden_out = named_api_out[0]
named_api_cell_out = named_api_out[1]
np_hidden_out, np_cell_out = non_cudnn_step(
step_input_np, pre_hidden_np, pre_cell_np, gate_w, gate_b)
self.assertTrue(
np.allclose(
api_hidden_out.numpy(), np_hidden_out, rtol=1e-5, atol=0))
self.assertTrue(
np.allclose(
api_cell_out.numpy(), np_cell_out, rtol=1e-5, atol=0))
self.assertTrue(
np.allclose(
named_api_hidden_out.numpy(),
np_hidden_out,
rtol=1e-5,
atol=0))
self.assertTrue(
np.allclose(
named_api_cell_out.numpy(), np_cell_out, rtol=1e-5, atol=0))
if __name__ == '__main__':
unittest.main()