You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
88 lines
2.6 KiB
88 lines
2.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestDecayedAdagradOp1(OpTest):
|
|
''' Test DecayedAdagrad operator with explicit attributes
|
|
'''
|
|
|
|
def setUp(self):
|
|
self.op_type = "decayed_adagrad"
|
|
|
|
param = np.random.random((123, 321)).astype("float32")
|
|
grad = np.random.random((123, 321)).astype("float32")
|
|
moment = np.zeros((123, 321)).astype("float32")
|
|
lr = 0.01
|
|
decay = 0.80
|
|
epsilon = 1e-8
|
|
|
|
self.inputs = {
|
|
'Param': param,
|
|
'Grad': grad,
|
|
'Moment': moment,
|
|
'LearningRate': np.array([lr]).astype("float32")
|
|
}
|
|
|
|
self.attrs = {'decay': decay, 'epsilon': epsilon}
|
|
|
|
moment_out = decay * moment + (1 - decay) * grad * grad
|
|
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
|
|
|
|
self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestDecayedAdagradOp2(OpTest):
|
|
''' Test DecayedAdagrad operator with default attributes
|
|
'''
|
|
|
|
def setUp(self):
|
|
self.op_type = "decayed_adagrad"
|
|
|
|
param = np.random.random((123, 321)).astype("float32")
|
|
grad = np.random.random((123, 321)).astype("float32")
|
|
moment = np.zeros((123, 321)).astype("float32")
|
|
lr = 0.01
|
|
decay = 0.95
|
|
epsilon = 1e-6
|
|
|
|
self.inputs = {
|
|
'Param': param,
|
|
'Grad': grad,
|
|
'Moment': moment,
|
|
'LearningRate': np.array([lr]).astype("float32")
|
|
}
|
|
|
|
self.attrs = {'decay': decay, 'epsilon': epsilon}
|
|
|
|
moment_out = decay * moment + (1 - decay) * grad * grad
|
|
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
|
|
|
|
self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|