You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
146 lines
4.6 KiB
146 lines
4.6 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
def bcast(x, target_tensor):
|
|
x_dims = x.shape
|
|
y_dims = target_tensor.shape
|
|
bcast_dims = []
|
|
for i in range(len(x_dims)):
|
|
bcast_dims.append(int(y_dims[i] / x_dims[i]))
|
|
bcast_dims = np.array(bcast_dims).astype("int64")
|
|
return bcast_dims
|
|
|
|
|
|
class TestExpandAsOpRank1(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand_as"
|
|
x = np.random.rand(100).astype("float64")
|
|
target_tensor = np.random.rand(200).astype("float64")
|
|
self.inputs = {'X': x, 'target_tensor': target_tensor}
|
|
self.attrs = {}
|
|
bcast_dims = bcast(x, target_tensor)
|
|
output = np.tile(self.inputs['X'], bcast_dims)
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandAsOpRank2(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand_as"
|
|
x = np.random.rand(10, 12).astype("float64")
|
|
target_tensor = np.random.rand(20, 24).astype("float64")
|
|
self.inputs = {'X': x, 'target_tensor': target_tensor}
|
|
self.attrs = {}
|
|
bcast_dims = bcast(x, target_tensor)
|
|
output = np.tile(self.inputs['X'], bcast_dims)
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandAsOpRank3(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand_as"
|
|
x = np.random.rand(2, 3, 20).astype("float64")
|
|
target_tensor = np.random.rand(4, 6, 40).astype("float64")
|
|
self.inputs = {'X': x, 'target_tensor': target_tensor}
|
|
self.attrs = {}
|
|
bcast_dims = bcast(x, target_tensor)
|
|
output = np.tile(self.inputs['X'], bcast_dims)
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandAsOpRank4(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand_as"
|
|
x = np.random.rand(1, 1, 7, 16).astype("float64")
|
|
target_tensor = np.random.rand(4, 6, 14, 32).astype("float64")
|
|
self.inputs = {'X': x, 'target_tensor': target_tensor}
|
|
self.attrs = {}
|
|
bcast_dims = bcast(x, target_tensor)
|
|
output = np.tile(self.inputs['X'], bcast_dims)
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
# Test dygraph API
|
|
class TestExpandAsDygraphAPI(unittest.TestCase):
|
|
def test_api(self):
|
|
import paddle
|
|
paddle.disable_static()
|
|
np_data_x = np.array([1, 2, 3]).astype('int32')
|
|
np_data_y = np.array([1, 2, 3, 1, 2, 3]).astype('int32')
|
|
data_x = paddle.to_tensor(np_data_x)
|
|
data_y = paddle.to_tensor(np_data_y)
|
|
out = fluid.layers.expand_as(data_x, data_y)
|
|
np_out = out.numpy()
|
|
assert np.array_equal(np_out, np.tile(np_data_x, (2)))
|
|
paddle.enable_static()
|
|
|
|
|
|
# Test python API
|
|
class TestExpandAsAPI(unittest.TestCase):
|
|
def test_api(self):
|
|
input1 = np.random.random([12, 14]).astype("float32")
|
|
input2 = np.random.random([48, 14]).astype("float32")
|
|
x = fluid.layers.data(
|
|
name='x', shape=[12, 14], append_batch_size=False, dtype="float32")
|
|
|
|
y = fluid.layers.data(
|
|
name='target_tensor',
|
|
shape=[48, 14],
|
|
append_batch_size=False,
|
|
dtype="float32")
|
|
|
|
out_1 = fluid.layers.expand_as(x, target_tensor=y)
|
|
|
|
exe = fluid.Executor(place=fluid.CPUPlace())
|
|
res_1 = exe.run(fluid.default_main_program(),
|
|
feed={"x": input1,
|
|
"target_tensor": input2},
|
|
fetch_list=[out_1])
|
|
assert np.array_equal(res_1[0], np.tile(input1, (4, 1)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|