You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_expand_op.py

242 lines
7.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
# Situation 1: expand_times is a list(without tensor)
class TestExpandOpRank1(OpTest):
def setUp(self):
self.op_type = "expand"
self.init_data()
self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
self.attrs = {'expand_times': self.expand_times}
output = np.tile(self.inputs['X'], self.expand_times)
self.outputs = {'Out': output}
def init_data(self):
self.ori_shape = [100]
self.expand_times = [2]
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestExpandOpRank2_Corner(TestExpandOpRank1):
def init_data(self):
self.ori_shape = [120]
self.expand_times = [2]
class TestExpandOpRank2(TestExpandOpRank1):
def init_data(self):
self.ori_shape = [12, 14]
self.expand_times = [2, 3]
class TestExpandOpRank3_Corner(TestExpandOpRank1):
def init_data(self):
self.ori_shape = (2, 10, 5)
self.expand_times = (1, 1, 1)
class TestExpandOpRank3(TestExpandOpRank1):
def init_data(self):
self.ori_shape = (2, 4, 15)
self.expand_times = (2, 1, 4)
class TestExpandOpRank4(TestExpandOpRank1):
def init_data(self):
self.ori_shape = (2, 4, 5, 7)
self.expand_times = (3, 2, 1, 2)
# Situation 2: expand_times is a list(with tensor)
class TestExpandOpRank1_tensor_attr(OpTest):
def setUp(self):
self.op_type = "expand"
self.init_data()
expand_times_tensor = []
for index, ele in enumerate(self.expand_times):
expand_times_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs = {
'X': np.random.random(self.ori_shape).astype("float64"),
'expand_times_tensor': expand_times_tensor,
}
self.attrs = {"expand_times": self.infer_expand_times}
output = np.tile(self.inputs['X'], self.expand_times)
self.outputs = {'Out': output}
def init_data(self):
self.ori_shape = [100]
self.expand_times = [2]
self.infer_expand_times = [-1]
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestExpandOpRank2_Corner_tensor_attr(TestExpandOpRank1_tensor_attr):
def init_data(self):
self.ori_shape = [12, 14]
self.expand_times = [1, 1]
self.infer_expand_times = [1, -1]
class TestExpandOpRank2_attr_tensor(TestExpandOpRank1_tensor_attr):
def init_data(self):
self.ori_shape = [12, 14]
self.expand_times = [2, 3]
self.infer_expand_times = [-1, 3]
# Situation 3: expand_times is a tensor
class TestExpandOpRank1_tensor(OpTest):
def setUp(self):
self.op_type = "expand"
self.init_data()
self.inputs = {
'X': np.random.random(self.ori_shape).astype("float64"),
'ExpandTimes': np.array(self.expand_times).astype("int32"),
}
self.attrs = {}
output = np.tile(self.inputs['X'], self.expand_times)
self.outputs = {'Out': output}
def init_data(self):
self.ori_shape = [100]
self.expand_times = [2]
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestExpandOpRank2_tensor(TestExpandOpRank1_tensor):
def init_data(self):
self.ori_shape = [12, 14]
self.expand_times = [2, 3]
# Situation 4: input x is Integer
class TestExpandOpInteger(OpTest):
def setUp(self):
self.op_type = "expand"
self.inputs = {
'X': np.random.randint(
10, size=(2, 4, 5)).astype("int32")
}
self.attrs = {'expand_times': [2, 1, 4]}
output = np.tile(self.inputs['X'], (2, 1, 4))
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output()
# Situation 5: input x is Bool
class TestExpandOpBoolean(OpTest):
def setUp(self):
self.op_type = "expand"
self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
self.attrs = {'expand_times': [2, 1, 4]}
output = np.tile(self.inputs['X'], (2, 1, 4))
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output()
# Situation 56: input x is Integer
class TestExpandOpInt64_t(OpTest):
def setUp(self):
self.op_type = "expand"
self.inputs = {
'X': np.random.randint(
10, size=(2, 4, 5)).astype("int64")
}
self.attrs = {'expand_times': [2, 1, 4]}
output = np.tile(self.inputs['X'], (2, 1, 4))
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output()
class TestExpandError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
x1 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.CPUPlace())
expand_times = [2, 2]
self.assertRaises(TypeError, fluid.layers.expand, x1, expand_times)
x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
self.assertRaises(TypeError, fluid.layers.expand, x2, expand_times)
x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool")
x3.stop_gradient = True
self.assertRaises(ValueError, fluid.layers.expand, x3, expand_times)
# Test python API
class TestExpandAPI(unittest.TestCase):
def test_api(self):
input = np.random.random([12, 14]).astype("float32")
x = fluid.layers.data(
name='x', shape=[12, 14], append_batch_size=False, dtype="float32")
positive_2 = fluid.layers.fill_constant([1], "int32", 2)
expand_times = fluid.layers.data(
name="expand_times", shape=[2], append_batch_size=False)
out_1 = fluid.layers.expand(x, expand_times=[2, 3])
out_2 = fluid.layers.expand(x, expand_times=[positive_2, 3])
out_3 = fluid.layers.expand(x, expand_times=expand_times)
g0 = fluid.backward.calc_gradient(out_2, x)
exe = fluid.Executor(place=fluid.CPUPlace())
res_1, res_2, res_3 = exe.run(fluid.default_main_program(),
feed={
"x": input,
"expand_times":
np.array([1, 3]).astype("int32")
},
fetch_list=[out_1, out_2, out_3])
assert np.array_equal(res_1, np.tile(input, (2, 3)))
assert np.array_equal(res_2, np.tile(input, (2, 3)))
assert np.array_equal(res_3, np.tile(input, (1, 3)))
if __name__ == "__main__":
unittest.main()