You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_functional_conv3d_tran...

488 lines
15 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import numpy as np
import unittest
from unittest import TestCase
class TestFunctionalConv3DTranspose(TestCase):
batch_size = 4
spatial_shape = (8, 8, 8)
dtype = "float32"
output_size = None
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NDHWC"
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 3
else:
filter_shape = tuple(self.filter_shape)
self.weight = np.random.uniform(
-1, 1, (self.in_channels, self.out_channels // self.groups
) + filter_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(-1, 1, (
self.out_channels, )).astype(self.dtype)
self.channel_last = (self.data_format == "NDHWC")
if self.channel_last:
self.input_shape = (self.batch_size, ) + self.spatial_shape + (
self.in_channels, )
else:
self.input_shape = (self.batch_size, self.in_channels
) + self.spatial_shape
self.input = np.random.uniform(-1, 1,
self.input_shape).astype(self.dtype)
def static_graph_case_1(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
y = fluid.layers.conv3d_transpose(
x,
self.out_channels,
output_size=self.output_size,
filter_size=self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
param_attr=I.NumpyArrayInitializer(self.weight),
bias_attr=False
if self.no_bias else I.NumpyArrayInitializer(self.bias),
act=self.act,
data_format=self.data_format)
exe = fluid.Executor(self.place)
exe.run(start)
out, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
return out
def static_graph_case_2(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight.shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
y = F.conv_transpose3d(
x,
weight,
None if self.no_bias else bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
data_format=self.data_format)
if self.act == 'sigmoid':
y = F.sigmoid(y)
exe = fluid.Executor(self.place)
exe.run(start)
feed_dict = {"input": self.input, "weight": self.weight}
if not self.no_bias:
feed_dict["bias"] = self.bias
out, = exe.run(main, feed=feed_dict, fetch_list=[y])
return out
def dygraph_case(self):
with dg.guard(self.place):
x = dg.to_variable(self.input)
weight = dg.to_variable(self.weight)
bias = None if self.no_bias else dg.to_variable(self.bias)
y = F.conv_transpose3d(
x,
weight,
bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
data_format=self.data_format)
if self.act == 'sigmoid':
y = F.sigmoid(y)
out = y.numpy()
return out
def _test_identity(self):
self.prepare()
out1 = self.static_graph_case_1()
out2 = self.static_graph_case_2()
out3 = self.dygraph_case()
np.testing.assert_array_almost_equal(out1, out2)
np.testing.assert_array_almost_equal(out2, out3)
def test_identity_cpu(self):
self.place = fluid.CPUPlace()
self._test_identity()
@unittest.skipIf(not fluid.core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
def test_identity_gpu(self):
self.place = fluid.CUDAPlace(0)
self._test_identity()
class TestFunctionalConv3DTransposeError(TestCase):
batch_size = 4
spatial_shape = (8, 8, 8)
dtype = "float32"
output_size = None
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NDHWC"
def test_exception(self):
self.prepare()
with self.assertRaises(ValueError):
self.static_graph_case()
def prepare(self):
if isinstance(self.filter_shape, int):
filter_shape = (self.filter_shape, ) * 3
else:
filter_shape = tuple(self.filter_shape)
self.weight_shape = (self.in_channels, self.out_channels // self.groups
) + filter_shape
self.bias_shape = (self.out_channels, )
def static_graph_case(self):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
self.channel_last = self.data_format == "NDHWC"
if self.channel_last:
x = x = fluid.data(
"input", (-1, -1, -1, -1, self.in_channels),
dtype=self.dtype)
else:
x = fluid.data(
"input", (-1, self.in_channels, -1, -1, -1),
dtype=self.dtype)
weight = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
if not self.no_bias:
bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
y = F.conv_transpose3d(
x,
weight,
None if self.no_bias else bias,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
data_format=self.data_format)
if self.act == 'sigmoid':
y = F.sigmoid(y)
class TestFunctionalConv3DTransposeCase2(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase3(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase4(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = "same"
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = True
self.act = "sigmoid"
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase5(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = "valid"
self.stride = (1, 2, 1)
self.dilation = (2, 1, 1)
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase6(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 4
self.filter_shape = 3
self.padding = "valid"
self.stride = (1, 2, 1)
self.dilation = 1
self.groups = 4
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase7(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 4
self.filter_shape = 3
self.padding = "valid"
self.output_size = (10, 17, 10)
self.stride = (1, 2, 1)
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase8(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [1, 2], [2, 1], [0, 0]]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeCase9(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [1, 1], [2, 2]]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase10(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [1, 1, 2, 2, 1, 1]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeCase11(TestFunctionalConv3DTranspose):
def setUp(self):
self.in_channels = 4
self.out_channels = 6
self.filter_shape = 3
self.padding = [1, 2, 1]
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase2(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [1, 2, 2, 1, 3]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeErrorCase3(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [0, 0], [1, 1], [1, 2], [2, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NDHWC"
class TestFunctionalConv3DTransposeErrorCase4(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.filter_shape = 3
self.padding = [[0, 0], [1, 2], [1, 1], [0, 0], [2, 1]]
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase5(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = -2
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase7(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.output_size = "not_valid"
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NCDHW"
class TestFunctionalConv3DTransposeErrorCase8(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 4
self.out_channels = 5
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 1
self.no_bias = False
self.act = "sigmoid"
self.data_format = "not_valid"
class TestFunctionalConv3DTransposeErrorCase9(
TestFunctionalConv3DTransposeError):
def setUp(self):
self.in_channels = 3
self.out_channels = 4
self.filter_shape = 3
self.padding = 0
self.stride = 1
self.dilation = 1
self.groups = 2
self.no_bias = False
self.act = "sigmoid"
self.data_format = "NCDHW"
if __name__ == "__main__":
unittest.main()