You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
3.4 KiB
107 lines
3.4 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.dygraph as dg
|
|
|
|
|
|
class TestKronOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "kron"
|
|
self.dtype = self._init_dtype()
|
|
x = np.random.uniform(size=(10, 10)).astype(self.dtype)
|
|
y = np.random.uniform(size=(10, 10)).astype(self.dtype)
|
|
out_ref = np.kron(x, y)
|
|
self.inputs = {'X': x, 'Y': y}
|
|
self.outputs = {'Out': out_ref}
|
|
|
|
def _init_dtype(self):
|
|
return "float64"
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X', 'Y'], 'Out')
|
|
|
|
def test_check_grad_ignore_x(self):
|
|
self.check_grad(['Y'], 'Out', no_grad_set=set('X'))
|
|
|
|
def test_check_grad_ignore_y(self):
|
|
self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
|
|
|
|
|
|
class TestKronOp2(TestKronOp):
|
|
def setUp(self):
|
|
self.op_type = "kron"
|
|
self.dtype = self._init_dtype()
|
|
x = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
|
|
y = np.random.uniform(size=(10, 10)).astype(self.dtype)
|
|
out_ref = np.kron(x, y)
|
|
self.inputs = {'X': x, 'Y': y}
|
|
self.outputs = {'Out': out_ref}
|
|
|
|
|
|
class TestKronOp3(TestKronOp):
|
|
def setUp(self):
|
|
self.op_type = "kron"
|
|
self.dtype = self._init_dtype()
|
|
x = np.random.uniform(size=(10, 10)).astype(self.dtype)
|
|
y = np.random.uniform(size=(5, 5, 4)).astype(self.dtype)
|
|
out_ref = np.kron(x, y)
|
|
self.inputs = {'X': x, 'Y': y}
|
|
self.outputs = {'Out': out_ref}
|
|
|
|
|
|
class TestKronLayer(unittest.TestCase):
|
|
def test_case(self):
|
|
a = np.random.randn(10, 10).astype(np.float64)
|
|
b = np.random.randn(10, 10).astype(np.float64)
|
|
|
|
place = fluid.CPUPlace()
|
|
with dg.guard(place):
|
|
a_var = dg.to_variable(a)
|
|
b_var = dg.to_variable(b)
|
|
c_var = paddle.kron(a_var, b_var)
|
|
np.testing.assert_allclose(c_var.numpy(), np.kron(a, b))
|
|
|
|
def test_case_with_output(self):
|
|
a = np.random.randn(10, 10).astype(np.float64)
|
|
b = np.random.randn(10, 10).astype(np.float64)
|
|
|
|
main = fluid.Program()
|
|
start = fluid.Program()
|
|
with fluid.unique_name.guard():
|
|
with fluid.program_guard(main, start):
|
|
a_var = fluid.data("a", [-1, -1], dtype="float64")
|
|
b_var = fluid.data("b", [-1, -1], dtype="float64")
|
|
out_var = paddle.kron(a_var, b_var)
|
|
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
exe.run(start)
|
|
c, = exe.run(main, feed={'a': a, 'b': b}, fetch_list=[out_var])
|
|
np.testing.assert_allclose(c, np.kron(a, b))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|